Coder Social home page Coder Social logo

Yoon Phil Lee's Projects

flow-based-image-abstraction icon flow-based-image-abstraction

This repository is the implementation of the paper "Flow-Based Image Abstraction" for course CS663 : Digital Image Processing.

geometry_tutorials icon geometry_tutorials

ROS geometry_tutorials stack migrated from https://kforge.ros.org/geometry/tutorials/branches

go icon go

The Go programming language

go-chart icon go-chart

go chart is a basic charting library in native golang.

gource icon gource

software version control visualization

gt-bitng icon gt-bitng

Georgia Tech Bio-Interfaced Translational Nanoengineering Group

guava icon guava

Google core libraries for Java

hiper icon hiper

🚀 A statistical analysis tool for performance testing

hugo_blog icon hugo_blog

存储Hugo博客项目,博客地址:http://hugo.jiahongw.com

hytech-blog icon hytech-blog

Tech blog community for people who are new to tech.

iirj icon iirj

An efficient IIR filter library written in JAVA

ikbt icon ikbt

A python package to solve robot arm inverse kinematics in symbolic form

image-segmentation icon image-segmentation

Image Segmentation with Watershed Algorithm Any grayscale image can be viewed as a topographic surface where high intensity denotes peaks and hills while low intensity denotes valleys. You start filling every isolated valleys (local minima) with different colored water (labels). As the water rises, depending on the peaks (gradients) nearby, water from different valleys, obviously with different colors will start to merge. To avoid that, you build barriers in the locations where water merges. You continue the work of filling water and building barriers until all the peaks are under water. Then the barriers you created gives you the segmentation result. This is the "philosophy" behind the watershed. You can visit the CMM webpage on watershed to understand it with the help of some animations. But this approach gives you oversegmented result due to noise or any other irregularities in the image. So OpenCV implemented a marker-based watershed algorithm where you specify which are all valley points are to be merged and which are not. It is an interactive image segmentation. What we do is to give different labels for our object we know. Label the region which we are sure of being the foreground or object with one color (or intensity), label the region which we are sure of being background or non-object with another color and finally the region which we are not sure of anything, label it with 0. That is our marker. Then apply watershed algorithm. Then our marker will be updated with the labels we gave, and the boundaries of objects will have a value of -1.

imagej icon imagej

:sparkler: Open scientific N-dimensional image processing :microscope:

industrial_core icon industrial_core

ROS-Industrial core meta-package (http://wiki.ros.org/industrial_core)

interactive-semi-automatic-image-2d-bounding-box-annotation-tool-using-multi-template_matching icon interactive-semi-automatic-image-2d-bounding-box-annotation-tool-using-multi-template_matching

Interactive Semi Automatic Image 2D Bounding Box Annotation and Labelling Tool using Multi Template Matching An Interactive Semi Automatic Image 2D Bounding Box Annotation/Labelling Tool to aid the Annotater/User to rapidly create 2D Bounding Box Single Object Detection masks for large number of training images in a semi automatic manner in order to train an object detection deep neural network such as Mask R-CNN or U-Net. As the Annotater/User starts annotating/labelling by drawing a bounding box for a few number of images in the selected folder then the algorithm suggests bounding box predictions for the rest of the yet to be annotated/labelled images in the folder. If the predictions are right then the user/annotater can simply press the keyboard key 'y' which indicates that the detected bounding box is correct. If the prediction is wrong then the user/annotater can manually draw a rectangular 2D bounding box over the correct ROI (Region of interest) in the image and then press the key 'y' to proceed further to the rest of the images in the folder. If the user/annotater made a mistake while drawing the 2D bounding box, then he/she can press the key 'n' in order to remove the incorrectly marked 2D bounding box and he/she can repeat the process for the same image until he/she draws the correct 2D bounding box and then after drawing the correct 2D bounding box, the user/annotater may press the key 'y' to continue to the rest of the images. The 2D bounding box prediction over the whole image data set improves as the user/annotater annotates/labels more number of images by drawing 2D bounding boxes. This tool allows the user/annotater to not only interactively and rapidly annotate large number of images but also to validate the predictions at the same time interactively. This tool helps the user/annotater to save a lot of time when annotating/labelling and validating the predictions for a large number of training images in a folder. Instructions to use:- 1. If the training images are in JPEG or any other format, then convert them to PNG format using some other tool or program before using these images for annotation. 2. All the training images must contain the object of interest which is to be annotated. 3. Currently the application only supports 2D bounding box annotation for single object detection per image, but in the future semantic segmentation based annotation features will be added which will allow precise boundary segmentation masks of an object in an image. 4. If some or all of the training images have varying dimensions(shapes/resolutions), then resize them to the same dimensions using this tool by providing the height and width to which all the training images need to be resized to. The height and width are inputed separately in two different dialog boxes which pop up once the program is executed. If the training images need not be resized then press the cancel button in the dialog boxes requesting the height and width. 5. Select the folder containing the training images by navigating to the folder containing the training images through a dialog box which pops up after the program is executed. If the images need to be resized then two dialog boxes pop up. The first dialog box is to navigate to the destination folder containing the unresized raw training images and after resizing another dialog box pops up to navigate to the folder containing the saved resized training images named as "resized_data". If the images need not be resized then only one dialog box pops up so that the user can navigate to the raw training images folder directly. 6. The images in the folder pop up one by one. After drawing the correct 2D bounding box over the ROI (region of Interest), press the 'y' key. Except the first image, the rest of the images will have a 2D bounding box drawn over them. If the predicted box is accurate, then continue by pressing the 'y' key. If the prediction is incorrect, then draw the accurate bounding box and press the 'y' key. If any mistake occured while drawing the 2D box, then reset the image by removing the incorrect drawing by pressing the 'n' key and then draw the correct box and press the 'y' key. 7. The output images are stored in four different folders in the same directory containing the training images folder. among the four folders, one contains the cropped templates of the bounding boxes, black and white mask images, training images and the images with 2D box detection markings.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.