Coder Social home page Coder Social logo

yanglabhkust / mfair Goto Github PK

View Code? Open in Web Editor NEW
6.0 1.0 1.0 41.79 MB

mfair: Matrix Factorization with Auxiliary Information in R

Home Page: https://yanglabhkust.github.io/mfair/

License: Other

R 77.60% MATLAB 22.40%
empirical-bayes gradient-boosting matrix-completion matrix-factorization variational-inference r expectation-maximization-algorithm low-rank

mfair's Introduction

mfair: Matrix Factorization with Auxiliary Information in R

DOI GitHub repo size Hits GitHub Repo stars GitHub forks R-CMD-check

The R package mfair implements the methods based on the paper MFAI: A scalable Bayesian matrix factorization approach to leveraging auxiliary information. MFAI integrates gradient boosted trees in the probabilistic matrix factorization framework to leverage auxiliary information effectively and adaptively.

Installation

For a quick start, you can install the development version of mfair from GitHub with:

# install.packages("devtools")
devtools::install_github("YangLabHKUST/mfair")

For more illustration and examples, you can alternatively use:

# install.packages("devtools")
devtools::install_github("YangLabHKUST/mfair", build_vignettes = TRUE)

to build vignettes simultaneously. Please note that it can take a few more minutes.

Examples

  • This is a basic example which shows you how to solve a common problem:
set.seed(20230306)
library(mfair)

# Simulate data
# Set the data dimension and rank
N <- 100
M <- 100
K_true <- 2L

# Set the proportion of variance explained (PVE)
PVE_Z <- 0.8
PVE_Y <- 0.5

# Generate auxiliary information X
X1 <- runif(N, min = -10, max = 10)
X2 <- runif(N, min = -10, max = 10)
X <- cbind(X1, X2)

# F(X)
FX1 <- X1 / 2 - X2
FX2 <- (X1^2 - X2^2 + 2 * X1 * X2) / 10
FX <- cbind(FX1, FX2)

# Generate the factor matrix Z (= F(X) + noise)
sig1_sq <- var(FX1) * (1 / PVE_Z - 1)
Z1 <- FX1 + rnorm(n = N, mean = 0, sd = sqrt(sig1_sq))
sig2_sq <- var(FX2) * (1 / PVE_Z - 1)
Z2 <- FX2 + rnorm(n = N, mean = 0, sd = sqrt(sig2_sq))
Z <- cbind(Z1, Z2)

# Generate the loading matrix W
W <- matrix(rnorm(M * K_true), nrow = M, ncol = K_true)

# Generate the main data matrix Y_obs (= Y + noise)
Y <- Z %*% t(W)
Y_var <- var(as.vector(Y))
epsilon_sq <- Y_var * (1 / PVE_Y - 1)
Y_obs <- Y + matrix(
  rnorm(N * M,
    mean = 0,
    sd = sqrt(epsilon_sq)
  ),
  nrow = N, ncol = M
)

# Create MFAIR object
mfairObject <- createMFAIR(Y_obs, as.data.frame(X), K_max = K_true)
#> The main data matrix Y is completely observed!
#> The main data matrix Y has been centered with mean = 0.147726471347656!

# Fit the MFAI model
mfairObject <- fitGreedy(mfairObject, sf_para = list(verbose_loop = FALSE))
#> Set K_max = 2!
#> Initialize the parameters of Factor 1......
#> After 2 iterations Stage 1 ends!
#> After 77 iterations Stage 2 ends!
#> Factor 1 retained!
#> Initialize the parameters of Factor 2......
#> After 2 iterations Stage 1 ends!
#> After 76 iterations Stage 2 ends!
#> Factor 2 retained!

# Prediction based on the low-rank approximation
Y_hat <- predict(mfairObject)
#> The main data matrix Y has no missing entries!

# Root-mean-square-error
sqrt(mean((Y_obs - Y_hat)^2))
#> [1] 12.23344

# Predicted/true matrix variance ratio
var(as.vector(Y_hat)) / var(as.vector(Y_obs))
#> [1] 0.4714952

# Prediction/noise variance ratio
var(as.vector(Y_hat)) / var(as.vector(Y_obs - Y_hat))
#> [1] 0.9871629
  • mfair can also handle the matrix with missing entries:
# Split the data into the training set and test set
n_all <- N * M
training_ratio <- 0.5
train_set <- sample(1:n_all, n_all * training_ratio, replace = FALSE)
Y_train <- Y_test <- Y_obs
Y_train[-train_set] <- NA
Y_test[train_set] <- NA

# Create MFAIR object
mfairObject <- createMFAIR(Y_train, as.data.frame(X), K_max = K_true)
#> The main data matrix Y is partially observed!
#> The main data matrix Y has been centered with mean = 0.187847085351627!

# Fit the MFAI model
mfairObject <- fitGreedy(mfairObject, sf_para = list(verbose_loop = FALSE))
#> Set K_max = 2!
#> Initialize the parameters of Factor 1......
#> After 2 iterations Stage 1 ends!
#> After 97 iterations Stage 2 ends!
#> Factor 1 retained!
#> Initialize the parameters of Factor 2......
#> After 2 iterations Stage 1 ends!
#> After 82 iterations Stage 2 ends!
#> Factor 2 retained!

# Prediction based on the low-rank approximation
Y_hat <- predict(mfairObject)

# Root-mean-square-error
sqrt(mean((Y_test - Y_hat)^2, na.rm = TRUE))
#> [1] 13.08502

# Predicted/true matrix variance ratio
var(as.vector(Y_hat), na.rm = TRUE) / var(as.vector(Y_obs), na.rm = TRUE)
#> [1] 0.4078598

# Prediction/noise variance ratio
var(as.vector(Y_hat), na.rm = TRUE) / var(as.vector(Y_obs - Y_hat), na.rm = TRUE)
#> [1] 0.7989475
  • Empirically, the backfitting algorithm can further improve the performance:
# Refine the MFAI model with the backfitting algorithm
mfairObject <- fitBack(mfairObject,
  verbose_bf_inner = FALSE,
  sf_para = list(verbose_sf = FALSE, verbose_loop = FALSE)
)
#> Iteration: 1, relative difference of model parameters: 0.2678141.
#> Iteration: 2, relative difference of model parameters: 0.03957596.
#> Iteration: 3, relative difference of model parameters: 0.08902799.
#> Iteration: 4, relative difference of model parameters: 0.02089378.
#> Iteration: 5, relative difference of model parameters: 0.001688755.

# Prediction based on the low-rank approximation
Y_hat <- predict(mfairObject)

# Root-mean-square-error
sqrt(mean((Y_test - Y_hat)^2, na.rm = TRUE))
#> [1] 13.03505

# Predicted/true matrix variance ratio
var(as.vector(Y_hat), na.rm = TRUE) / var(as.vector(Y_obs), na.rm = TRUE)
#> [1] 0.4259078

# Prediction/noise variance ratio
var(as.vector(Y_hat), na.rm = TRUE) / var(as.vector(Y_obs - Y_hat), na.rm = TRUE)
#> [1] 0.8400624
vignette("ml100k")
vignette("neocortex")
  • For more documentation and examples, please visit our package website.

Citing our work

If you find the mfair package or any of the source code in this repository useful for your work, please cite:

Wang, Z., Zhang, F., Zheng, C., Hu, X., Cai, M., and Yang, C. (2023). MFAI: A scalable Bayesian matrix factorization approach to leveraging auxiliary information. arXiv preprint arXiv:2303.02566. URL: https://doi.org/10.48550/arXiv.2303.02566.

Development

The package is developed by Zhiwei Wang ([email protected]).

Contact

Please feel free to contact Zhiwei Wang ([email protected]), Prof. Mingxuan Cai ([email protected]), or Prof. Can Yang ([email protected]) with any inquiries.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.