Coder Social home page Coder Social logo

unights / connector Goto Github PK

View Code? Open in Web Editor NEW

This project forked from sfu-db/connector-x

0.0 0.0 0.0 292.26 MB

Fastest library to load data from DB to DataFrames in Rust and Python

Home Page: https://sfu-db.github.io/connector-x/intro.html

License: MIT License

Shell 0.05% Python 23.56% Rust 75.28% PLpgSQL 0.50% Just 0.60%

connector's Introduction

ConnectorX status discussions Downloads

Load data from to , the fastest way.

ConnectorX enables you to load data from databases into Python in the fastest and most memory efficient way.

What you need is one line of code:

import connectorx as cx

cx.read_sql("postgresql://username:password@server:port/database", "SELECT * FROM lineitem")

Optionally, you can accelerate the data loading using parallelism by specifying a partition column.

import connectorx as cx

cx.read_sql("postgresql://username:password@server:port/database", "SELECT * FROM lineitem", partition_on="l_orderkey", partition_num=10)

The function will partition the query by evenly splitting the specified column to the amount of partitions. ConnectorX will assign one thread for each partition to load and write data in parallel. Currently, we support partitioning on numerical columns (cannot contain NULL) for SPJA queries.

Experimental: We are now providing federated query support (PostgreSQL only and do not support partition for now), you can write a single query to join tables from two or more databases! (JRE >= 1.9 is required)

import connectorx as cx

db1 = "postgresql://username1:password1@server1:port1/database1"
db2 = "postgresql://username2:password2@server2:port2/database2"

cx.read_sql({"db1": db1, "db2": db2}, "SELECT * FROM db1.nation n, db2.region r where n.n_regionkey = r.r_regionkey")

Check out more detailed usage and examples here. A general introduction of the project can be found in this blog post.

Installation

pip install connectorx

Check out here to see how to build python wheel from source.

Performance

We compared different solutions in Python that provides the read_sql function, by loading a 10x TPC-H lineitem table (8.6GB) from Postgres into a DataFrame, with 4 cores parallelism.

Time chart, lower is better.

time chart

Memory consumption chart, lower is better.

memory chart

In conclusion, ConnectorX uses up to 3x less memory and 21x less time (3x less memory and 13x less time compared with Pandas.). More on here.

How does ConnectorX achieve a lightning speed while keeping the memory footprint low?

We observe that existing solutions more or less do data copy multiple times when downloading the data. Additionally, implementing a data intensive application in Python brings additional cost.

ConnectorX is written in Rust and follows "zero-copy" principle. This allows it to make full use of the CPU by becoming cache and branch predictor friendly. Moreover, the architecture of ConnectorX ensures the data will be copied exactly once, directly from the source to the destination.

How does ConnectorX download the data?

Upon receiving the query, e.g. SELECT * FROM lineitem, ConnectorX will first issue a LIMIT 1 query SELECT * FROM lineitem LIMIT 1 to get the schema of the result set.

Then, if partition_on is specified, ConnectorX will issue SELECT MIN($partition_on), MAX($partition_on) FROM (SELECT * FROM lineitem) to know the range of the partition column. After that, the original query is split into partitions based on the min/max information, e.g. SELECT * FROM (SELECT * FROM lineitem) WHERE $partition_on > 0 AND $partition_on < 10000. ConnectorX will then run a count query to get the partition size (e.g. SELECT COUNT(*) FROM (SELECT * FROM lineitem) WHERE $partition_on > 0 AND $partition_on < 10000). If the partition is not specified, the count query will be SELECT COUNT(*) FROM (SELECT * FROM lineitem).

Finally, ConnectorX will use the schema info as well as the count info to allocate memory and download data by executing the queries normally.

Once the downloading begins, there will be one thread for each partition so that the data are downloaded in parallel at the partition level. The thread will issue the query of the corresponding partition to the database and then write the returned data to the destination row-wise or column-wise (depends on the database) in a streaming fashion.

Supported Sources & Destinations

Example connection string, supported protocols and data types for each data source can be found here.

For more planned data sources, please check out our discussion.

Sources

  • Postgres
  • Mysql
  • Mariadb (through mysql protocol)
  • Sqlite
  • Redshift (through postgres protocol)
  • Clickhouse (through mysql protocol)
  • SQL Server
  • Azure SQL Database (through mssql protocol)
  • Oracle
  • Big Query
  • ODBC (WIP)
  • ...

Destinations

  • Pandas
  • PyArrow
  • Modin (through Pandas)
  • Dask (through Pandas)
  • Polars (through PyArrow)

Documentation

Doc: https://sfu-db.github.io/connector-x/intro.html Rust docs: stable nightly

Next Plan

Checkout our discussion to participate in deciding our next plan!

Historical Benchmark Results

https://sfu-db.github.io/connector-x/dev/bench/

Developer's Guide

Please see Developer's Guide for information about developing ConnectorX.

Supports

You are always welcomed to:

  1. Ask questions & propose new ideas in our github discussion.
  2. Ask questions in stackoverflow. Make sure to have #connectorx attached.

Organizations and Projects using ConnectorX

To add your project/organization here, reply our post here

Citing ConnectorX

If you use ConnectorX, please consider citing the following paper:

Xiaoying Wang, Weiyuan Wu, Jinze Wu, Yizhou Chen, Nick Zrymiak, Changbo Qu, Lampros Flokas, George Chow, Jiannan Wang, Tianzheng Wang, Eugene Wu, Qingqing Zhou. ConnectorX: Accelerating Data Loading From Databases to Dataframes. VLDB 2022.

BibTeX entry:

@article{connectorx2022,
  author    = {Xiaoying Wang and Weiyuan Wu and Jinze Wu and Yizhou Chen and Nick Zrymiak and Changbo Qu and Lampros Flokas and George Chow and Jiannan Wang and Tianzheng Wang and Eugene Wu and Qingqing Zhou},
  title     = {ConnectorX: Accelerating Data Loading From Databases to Dataframes},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {11},
  pages     = {2994--3003},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p2994-wang.pdf},
}

connector's People

Contributors

wangxiaoying avatar dovahcrow avatar wukkkinz-0725 avatar yizhou150 avatar wseaton avatar anatolybuga avatar jordan-m-young avatar auyer avatar gruuya avatar jinzew avatar ritchie46 avatar lbilali avatar alswang18 avatar houqp avatar wkollendorf avatar glennpierce avatar jorgecarleitao avatar quambene avatar cbqu avatar maxb2 avatar therealhieu avatar ferriluli avatar alexander-beedie avatar amar1729 avatar cabbagec avatar deepsourcebot avatar kayhoogland avatar kevinheavey avatar marianoguerra avatar zen-xu avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.