Coder Social home page Coder Social logo

pecann's Introduction

Physics and Equality Constrained Artificial Neural Networks

Code and data accompanying the manuscript titled "Physics and Equality Constrained Artificial Neural Networks: Application to Partial Differential Equations" will be published at the completion of the peer-review process.

Abstract

Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE). In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as an unconstrained optimization problem, which is then used to train a deep feed-forward neural network. Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs. To address these limitations, we propose a versatile framework that can tackle both inverse and forward problems. The framework is adept at multi-fidelity data fusion and can seamlessly constrain the governing physics equations with proper initial and boundary conditions. The backbone of the proposed framework is a nonlinear, equality-constrained optimization problem formulation aimed at minimizing a loss functional, where an augmented Lagrangian method (ALM) is used to formally convert a constrained-optimization problem into an unconstrained-optimization problem. We implement the ALM within a stochastic, gradient-descent type training algorithm in a way that scrupulously focuses on meeting the constrains without sacrificing other loss terms. Additionally, as a modification of the original residual layers, we propose lean residual layers in our neural network architecture to address the so-called vanishing-gradient problem. We demonstrate the efficacy and versatility of our physics- and equality-constrained deep-learning framework by applying it to learn the solutions of various multi-dimensional PDEs, including a nonlinear inverse problem from the hydrology field with multi-fidelity data fusion. The results produced with our proposed model match exact solutions very closely for all the cases considered.

Results :
Two dimensional Poisson's equation: Plot over lines

alt-text-1

Two dimensional Helmholtz equation: Plot over lines

alt-text-1

Three dimensional Poisson's equation: Plot over lines

alt-text-1

Klein Gordon equation: Plot over lines

alt-text-1

Network :

alt-text-1

Citation

Please cite us if you find our work useful for your research:

@article{basir2021physics,
  title={Physics and Equality Constrained Artificial Neural Networks: Application to Partial Differential Equations},
  author={Basir, Shamsulhaq and Senocak, Inanc},
  journal={arXiv preprint arXiv:2109.14860},
  year={2021}
}

pecann's People

Contributors

shamsbasir avatar isenocak avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.