Coder Social home page Coder Social logo

stes / compressed_sensing Goto Github PK

View Code? Open in Web Editor NEW
36.0 4.0 20.0 10.48 MB

Enhancing Compressive Sensing with Neural Networks

License: MIT License

Jupyter Notebook 98.93% Shell 0.01% TeX 1.06% Python 0.01%
machine-learning deep-learning compressed-sensing image-processing image-reconstruction theano

compressed_sensing's Introduction

A Deep Learning Approach to Compressive Sensing

Code, Latex Source and Presentation for seminar project at RWTH Aachen University, summer term 2016.

Based on the paper "A Deep Learning Approach to Structured Signal Recovery", evaluated on the Caltech-UCSD Birds 200 Dataset. Theano was used for training the network, with Lasagne as high-level library on top.

Abstract

Compressed sensing has proven to be an important technique in signal acquisition, especially in contexts in which sensor quality or the maximum possible duration of the measurement is limited. In this report, deep learning techniques are used to improve compressive sensing in the context of image acquisition. In a previous approach, \cite{Mousavi2015} deployed stacked denoising autoencoders capable of reconstructing images considerably faster than conventional iterative methods. Apart from reviewing this approach, a possible extension using convolutional autoencoders inspired by the popular VGGnet architecture is discussed. Instead of learning models from scratch, a simple yet effective way for adapting available filters used in ImageNet classification is presented. By reformulation of the autoencoder structure in terms of a fully convolutional network, the approach by \cite{Mousavi2015} can be adapted to arbritrarly large images for efficient learning of the measurement matrix and sparsity basis. Suggestions on the real implementation of such as system conclude the report.

Used Architecture

The input image is first transformed into an overcomplete and likely sparse representation by application of two convolutional blocks as in the original VGG architecture. These blocks were initialized using the VGG weights pre-trained on the ImageNet dataset. The resulting filter map undergoes spatial pooling, reducing the filter map size by a factor of 4. Afterwards, another convolution compresses the feature representation and outputs filter maps spatially reduced by a factor of 4, while the number of feature maps is 3. Overall, after this bottleneck operation, the measurement vector with $\frac{M}{N} = 0.25$ is obtained. In the backward pass, deconvolution with tied weights and unpooling using the stored pooling indices upsamples the measurement vector and is used for reconstruction of the image. Note that normalization layers (Batch Normalization between convolutions and ReLUs) were omitted in the figure.

Used Architecture

Results after Training

Image Reconstruction with pre-trained AE (a) depicts original images fed into the network. Those are compressed by a factor of M/N = 0.25 using a learnable, nonlinear measurement function. The reconstructions are shown in (b). (c) depicts the residuum, averaged over all color channels. Average PSNR over all images and color channels was 25.3 dB.

Residuals after Training

compressed_sensing's People

Contributors

stes avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar

compressed_sensing's Issues

Where is the module "ilu_deepml"?

Hi, Steffen. Very thanks for your work. I want to implement your code, but I got a little problem.
In your code file, In[3] from ilu_deepml import tools. But I cannot find this module. Is it writed by yourself? And how can I find it?
Thank you very much!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.