Coder Social home page Coder Social logo

srushti-9 / credit-card-fraud-detection Goto Github PK

View Code? Open in Web Editor NEW
0.0 2.0 0.0 2.42 MB

The Credit Card Fraud Detection Problem includes modeling past credit card transactions with the knowledge of the ones that turned out to be fraud. This model is then used to identify whether a new transaction is fraudulent or not. Our aim here is to detect 100% of the fraudulent transactions while minimizing the incorrect fraud classifications. The data set has 31 features, 28 of which have been anonymized and are labeled V1 through V28. The remaining three features are the time and the amount of the transaction as well as whether that transaction was fraudulent or not.

Jupyter Notebook 100.00%

credit-card-fraud-detection's Introduction

Credit-Card-Fraud-Detection

The Credit Card Fraud Detection Problem includes modeling past credit card transactions with the knowledge of the ones that turned out to be fraud. This model is then used to identify whether a new transaction is fraudulent or not. Our aim here is to detect 100% of the fraudulent transactions while minimizing the incorrect fraud classifications. The data set has 31 features, 28 of which have been anonymized and are labeled V1 through V28. The remaining three features are the time and the amount of the transaction as well as whether that transaction was fraudulent or not.

-->Observations

  1. The data set is highly skewed, consisting of 492 frauds in a total of 284,807 observations. This resulted in only 0.172% fraud cases. This skewed set is justified by the low number of fraudulent transactions.
  2. The dataset consists of numerical values from the 28 ‘Principal Component Analysis (PCA)’ transformed features, namely V1 to V28. Furthermore, there is no metadata about the original features provided, so pre-analysis or feature study could not be done.
  3. The ‘Time’ and ‘Amount’ features are not transformed data.
  4. There is no missing value in the dataset.

-->Inferences drawn:

  1. Owing to such imbalance in data, an algorithm that does not do any feature analysis and predicts all the transactions as non-frauds will also achieve an accuracy of 99.828%. Therefore, accuracy is not a correct measure of efficiency in our case. We need some other standard of correctness while classifying transactions as fraud or non-fraud.
  2. The ‘Time’ feature does not indicate the actual time of the transaction and is more of a list of the data in chronological order. So we assume that the ‘Time’ feature has little or no significance in classifying a fraud transaction. Therefore, we eliminate this column from further analysis.

image

credit-card-fraud-detection's People

Contributors

srushti-9 avatar

Watchers

James Cloos avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.