Coder Social home page Coder Social logo

sbbauer / targeted-survival Goto Github PK

View Code? Open in Web Editor NEW

This project forked from eliotzhu/targeted-survival

1.0 0.0 0.0 3.71 MB

Targeted estimation of heterogeneous treatment effect in observational survival analysis

R 58.80% HTML 23.60% CSS 8.40% Shell 9.19%

targeted-survival's Introduction

Targeted estimation of heterogeneous treatment effect in observational survival analysis

Project Status: Active โ€“ The project has reached a stable, usable state and is being actively developed. MIT license DOI

Authors: Jie Zhu and Blanca Gallego

This paper proposed a three-stage modular design for estimating the treatment effect heterogeneity in observational survival analysis. The method provides monotonic survival curves with adjustment for selection and censoring bias. We automate the identification of features contributing to the effect heterogeneity. We avoid the ad-hoc subgroup selection by non-parametrically estimating the conditional treatment effect. We provide evidence that oral anticoagulants confer protection against stroke and death on newly diagnosed non-valvular atrial fibrillation patients.

require(dplyr)
require(MOSS) #devtools::install_github('wilsoncai1992/MOSS')
require(survival)
#require(simcausal) #if you want complicate simulation, please install from local directory install.packages("~/simcausal_0.5.5.tar", repos = NULL)
require(abind)
require(tidyverse)

Generate some sample

n <- 100
W <- data.frame(W1 = runif(n), W2 = rbinom(n, 1, 0.5))
A <- rbinom(n, 1, 0.5)
EventTime <- rgeom(n,plogis(-4 + W$W1 * W$W2 - A)) + 1
CensorTime <- rgeom(n, plogis(-6 + W$W1)) + 1
T.tilde <- pmin(EventTime, CensorTime)
Delta <- as.numeric(T.tilde == EventTime)
df = data.frame(A = A, T.tilde = T.tilde, Delta = Delta, W1 = W$W1, W2=W$W2)
df$ID <- seq.int(nrow(df))
max_time = 30
head(df)
##   A T.tilde Delta         W1 W2 ID
## 1 0      31     1 0.04124854  0  1
## 2 0       2     0 0.72005783  1  2
## 3 0      76     1 0.47270835  0  3
## 4 1      40     0 0.50742676  0  4
## 5 0      12     1 0.53807847  0  5
## 6 0      13     0 0.22760599  0  6

Run the method proposed in the step 1 and 2 of paper

  df <- df[df$T.tilde<= max_time & df$T.tilde>0,]
  df <- df[complete.cases(df),]


  adjustVars <- grep('W', colnames(df), value = T)
  sl_lib_g <- c( "SL.earth","SL.gam") #choose your own esemble algorithm here 
  sl_lib_censor <- c( "SL.earth","SL.gam")
  sl_lib_failure <- c( "SL.earth","SL.gam")

  #df$T.tilde <- df$T.tilde + 1
  k_grid <- 1:max(df$T.tilde)

  #SL
  sl_fit <- initial_sl_fit(
    T_tilde = df$T.tilde,
    Delta = df$Delta,
    A = df$A,
    W = data.frame(df[, adjustVars]),
    #adjustVars = df[,c('W','W1')],
    t_max = max(df$T.tilde),
    sl_treatment = sl_lib_g,
    sl_censoring = sl_lib_censor,
    sl_failure = sl_lib_failure
  )


  sl_fit$density_failure_1$hazard_to_survival()
  sl_fit$density_failure_0$hazard_to_survival()
  sl_fit$density_failure_1$t <- k_grid
  sl_fit$density_failure_0$t <- k_grid

  sl_density_failure_1_marginal <- sl_fit$density_failure_1$clone(deep = TRUE)
  sl_density_failure_0_marginal <- sl_fit$density_failure_0$clone(deep = TRUE)
  sl_density_failure_1_marginal$survival <- matrix(colMeans(sl_density_failure_1_marginal$survival), nrow = 1)
  sl_density_failure_0_marginal$survival <- matrix(colMeans(sl_density_failure_0_marginal$survival), nrow = 1)


  out <- list(sl_fit_1 = sl_fit$density_failure_1$survival,
              sl_fit_0 = sl_fit$density_failure_0$survival,
              SL_diff = sl_fit$density_failure_1$survival-sl_fit$density_failure_0$survival)

Individual difference in survival probabilities

head(out$SL_diff)
##      [,1]         [,2]         [,3]         [,4]         [,5]         [,6]
## [1,]    0 -0.003269332 -0.006363846 -0.009270382 -0.011976896 -0.014471242
## [2,]    0 -0.001573978 -0.003149072 -0.004721138 -0.006286001 -0.007838636
## [3,]    0 -0.001830450 -0.003647504 -0.005445407 -0.007218389 -0.008959749
##              [,7]        [,8]        [,9]       [,10]       [,11]       [,12]
## [1,] -0.016741584 -0.01877629 -0.02056515 -0.02210062 -0.02338091 -0.02440952
## [2,] -0.009373092 -0.01088193 -0.01235639 -0.01378665 -0.01516458 -0.01648470
## [3,] -0.010661824 -0.01231544 -0.01391019 -0.01543489 -0.01688052 -0.01824113
##            [,13]       [,14]       [,15]       [,16]       [,17]       [,18]
## [1,] -0.02519327 -0.02573986 -0.02605537 -0.02614204 -0.02599694 -0.02561155
## [2,] -0.01774429 -0.01894279 -0.02008113 -0.02115981 -0.02217783 -0.02313065
## [3,] -0.01951369 -0.02069727 -0.02179198 -0.02279683 -0.02370844 -0.02451885
##            [,19]       [,20]       [,21]       [,22]       [,23]       [,24]
## [1,] -0.02497230 -0.02406209 -0.02286308 -0.02136129 -0.01955409 -0.01746002
## [2,] -0.02400844 -0.02479449 -0.02546308 -0.02597739 -0.02628774 -0.02633159
## [3,] -0.02521385 -0.02577151 -0.02616041 -0.02633841 -0.02625236 -0.02584070
##            [,25]        [,26]        [,27]        [,28]        [,29]
## [1,] -0.01512736 -0.012639590 -0.010113776 -0.007690128 -0.005510177
## [2,] -0.02603678 -0.025328352 -0.024140094 -0.022431456 -0.020207760
## [3,] -0.02503956 -0.023792921 -0.022066804 -0.019867025 -0.017255893
##             [,30]
## [1,] -0.003687888
## [2,] -0.017537589
hist(out$SL_diff)

The average on the ITEs will be the TMLE adjusted ATE.

#ATE
mean(out$SL_diff)
## [1] -0.01706689

Please refer to the paper for BART variable importance measure and kernal grouping to get the CATE for subgroups.

targeted-survival's People

Stargazers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.