Coder Social home page Coder Social logo

s-baumann / multivariatefunctions.jl Goto Github PK

View Code? Open in Web Editor NEW
5.0 2.0 1.0 262 KB

A framework for multivariate functions together with constructors for schumaker splines, OLS, Chebyshev, MARS splines for approximation.

License: Other

Julia 100.00%
interpolation algebra integration differentiation newtons-method julia-language

multivariatefunctions.jl's Introduction

MultivariateFunctions.jl

Build Coverage Documentation
Build status codecov docs-latest-img

This implements single algebra and evaluation on Multivariate functions. There are a few ways in which it can be used.

  • This can be used for approximation functions. It can currently implement OLS functions, Chebyshev polynomials, the Schumaker shape preserving spline and basic interpolation schemes. It can also do Recursive Partitioning and create Multivariate Adaptive Regression (MARS) Splines. It could be extended to implement other approximation schemes.
  • All basic algebra and calculus on a MultivariateFunction can be done analytically.
  • Newton's method is implemented so that roots and optima can be found using analytical Jacobians and Hessians.

This is unlikely to be updated again. I didn't really understand Julia well when I wrote it. I think it is all correct but it is pretty inefficient. So use with care.

multivariatefunctions.jl's People

Contributors

s-baumann avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar

Forkers

moomoofarm1

multivariatefunctions.jl's Issues

Broken examples of MARS

Issue

MARS example seems broken.

julia> using MultivariateFunctions


julia> using Random


julia> using DataFrames


julia> using Distributions


julia> using DataStructures


julia> Random.seed!(1992)

MersenneTwister(1992)

julia> nObs = 1000

1000

julia> dd = DataFrame()

0×0 DataFrame


julia> dd[:x] = rand( Normal(),nObs) + 0.1 .* rand( Normal(),nObs)

1000-element Vector{Float64}:
 -1.5194924275498334
  0.5844430822023597
 -0.5497375840875416
  1.2817822410251947
 -0.19060992619057496
 -0.47048055970036007
  0.6818583626457018
 -0.8554162326299839
 -1.3695617445991064
  1.0953038238849109
 -1.699099302747622
 -0.6780117585650899
  1.4192925709333952
  0.42807807496395617
  1.0352222109740405
  ⋮
 -0.10688015795519358
  0.9430607035612268
 -0.20183783555815388
  0.6460559374899443
  0.026095413811565132
 -0.6833593785111719
  0.07431322076156123
  0.2014010440942761
 -0.7793609005754738
  0.39473020003581993
 -0.5449445196399865
 -1.0193446965787274
 -1.2568550834023509
 -1.178925006150981
 -1.7098961465470663

julia> dd[:z] = rand( Normal(),nObs) + 0.1 .* rand( Normal(),nObs)

1000-element Vector{Float64}:
 -1.1750705521302567
  0.9069556021870959
  0.20960467727966883
 -0.016935093159266515
  0.32734357936941416
 -0.4583427779582831
 -1.2525094667318868
 -0.8855902909295208
 -0.7514670213109499
  0.37216278394183117
 -0.28668599160737784
  0.685074075486414
  0.3184272652769276
 -0.5276955662875091
  0.38991220787275427
  ⋮
  1.3861777686416614
  1.0765345340164898
 -0.1652608047507846
  0.719043828393897
  0.8701332884169406
  0.767772517601333
  1.0669198445676553
  0.11335691897963737
  1.5910107187781224
 -0.7128766324283243
 -0.7931006582401271
  0.4976775640182734
 -0.6536206642622754
 -0.31287850605786915
 -0.7850092399544946

julia> dd[:w] = (0.5 .* rand( Normal(),nObs)) .+ 0.7.*(dd[:z] .- dd[:x]) + 0.1 .* rand( Normal(),nObs)

1000-element Vector{Float64}:
 -0.0019189980122132633
  0.4725494429492194
 -0.0675946792898773
 -1.157130519654445
  0.14522767354377503
 -0.005382762866542205
 -1.2005096892042109
  0.13085627620806112
  0.05612174029581857
 -0.6172526046137324
  1.4778484610424196
  1.054709698408579
 -1.2271058467494558
 -0.5353888688122925
 -0.7294356191124297
  ⋮
  0.615069475148343
  0.2181079071913068
  0.09486662765477802
  0.4697963855574916
  0.15935631987862492
  0.5755374838341898
  0.7882977393176024
 -0.2396016872530803
  1.5271293107037496
 -0.8947695470014021
 -1.072537042317404
  0.04893462310292454
  0.026454764346978646
  0.5885500404818271
  1.3937893199788063

julia> dd[:y] = (dd[:x] .*dd[:w] ) .* (dd[:z] .- dd[:w]) .+ dd[:x] + rand( Normal(),nObs)

1000-element Vector{Float64}:
 -2.3487840899451675
  1.0087441497559786
 -2.280470624644659
 -0.9242658326625207
  0.815181257773693
 -0.5031071711999816
  0.30192536890203986
 -2.035262792736697
  0.03194223795679596
  1.13595311468184
  3.7442843912932613
  0.6009073972935214
 -0.44822283045481404
  0.6405293235510074
 -0.16269142011610555
  ⋮
 -2.4459349487643323
  1.7869773765861698
 -2.046579053983459
  0.9006917341756171
  0.41441684404908374
 -0.010334525049836674
  1.0941056908369529
  1.4286676478281712
 -0.26487929690458845
  0.5752509993328735
 -0.5676424153457388
 -1.9430060207426862
 -2.6246440845770023
 -1.5385613151541713
  4.127923473876518

julia> dd[7,:y] = 1.0

1.0

julia> y = :y

:y

julia> x_variables = Set{Symbol}([:w, :x, :z])
Set{Symbol} with 3 elements:
  :w
  :z
  :x

julia> number_of_divisions = 7
7

julia> rp_4, rp_reg_4 = create_recursive_partitioning(dd, y, x_variables, number_of_divisions; rel_tol = 1e-3)

ERROR: MethodError: Cannot `convert` an object of type String to an object of type Symbol
Closest candidates are:
  convert(::Type{S}, ::T) where {S, T<:CategoricalValue} at /Users/jinrae/.julia/packages/CategoricalArrays/0ZAbp/src/value.jl:68
  convert(::Type{T}, ::T) where T at essentials.jl:205
  Symbol(::String) at boot.jl:478
  ...
Stacktrace:
  [1] setindex!(h::Dict{Symbol, Float64}, v0::Float64, key0::String)
    @ Base ./dict.jl:374
  [2] evaluate(f::Piecewise_Function, coordinates::DataFrame)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/0_structs_and_generic_reversals.jl:717
  [3] _broadcast_getindex_evalf
    @ ./broadcast.jl:648 [inlined]
  [4] _broadcast_getindex
    @ ./broadcast.jl:621 [inlined]
  [5] getindex
    @ ./broadcast.jl:575 [inlined]
  [6] macro expansion
    @ ./broadcast.jl:984 [inlined]
  [7] macro expansion
    @ ./simdloop.jl:77 [inlined]
  [8] copyto!(dest::Vector{Vector{Union{Float64, MultivariateFunction}}}, bc::Base.Broadcast.Broadcasted{Nothing, Tuple{Base.OneTo{Int64}}, typeof(evaluate), Tuple{Vector{Piecewise_Function}, Base.RefValue{DataFrame}}})
    @ Base.Broadcast ./broadcast.jl:983
  [9] copyto!
    @ ./broadcast.jl:936 [inlined]
 [10] copy
    @ ./broadcast.jl:908 [inlined]
 [11] materialize
    @ ./broadcast.jl:883 [inlined]
 [12] create_ols_approximation(dd::DataFrame, y::Symbol, model::Vector{Piecewise_Function}; allowrankdeficient::Bool)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/5_ols_regression.jl:43
 [13] create_ols_approximation
    @ ~/.julia/packages/MultivariateFunctions/a2IXB/src/5_ols_regression.jl:43 [inlined]
 [14] optimise_given_specific_split(dd::DataFrame, y::Symbol, array_of_funcs::Vector{Piecewise_Function}, ind::Int64, split_variable::Symbol, split_point::Float64, SplitFunction::typeof(MultivariateFunctions.add_split_with_step_function), removeSplitFunction::Bool)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:28
 [15] #56
    @ ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:36 [inlined]
 [16] optimize(f::MultivariateFunctions.var"#56#57"{DataFrame, Symbol, Vector{Piecewise_Function}, Int64, Symbol, typeof(MultivariateFunctions.add_split_with_step_function), Bool}, x_lower::Float64, x_upper::Float64, mo::Optim.Brent; rel_tol::Float64, abs_tol::Float64, iterations::Int64, store_trace::Bool, show_trace::Bool, callback::Nothing, show_every::Int64, extended_trace::Bool)
    @ Optim ~/.julia/packages/Optim/TNmSw/src/univariate/solvers/brent.jl:69
 [17] #optimize#80
    @ ~/.julia/packages/Optim/TNmSw/src/univariate/optimize/interface.jl:21 [inlined]
 [18] optimise_split(dd::DataFrame, y::Symbol, array_of_funcs::Vector{Piecewise_Function}, ind::Int64, split_variable::Symbol, rel_tol::Float64, SplitFunction::Function, removeSplitFunction::Bool)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:36
 [19] create_recursive_partitioning(dd::DataFrame, y::Symbol, x_variables::Set{Symbol}, MaxM::Int64; rel_tol::Float64)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:65
 [20] top-level scope
    @ REPL[17]:1

julia>

julia> rp_1, rp_reg_1 = create_mars_spline(dd, y, x_variables, number_of_divisions; rel_tol = 1e-3)
ERROR: MethodError: Cannot `convert` an object of type String to an object of type Symbol
Closest candidates are:
  convert(::Type{S}, ::T) where {S, T<:CategoricalValue} at /Users/jinrae/.julia/packages/CategoricalArrays/0ZAbp/src/value.jl:68
  convert(::Type{T}, ::T) where T at essentials.jl:205
  Symbol(::String) at boot.jl:478
  ...
Stacktrace:
  [1] setindex!(h::Dict{Symbol, Float64}, v0::Float64, key0::String)
    @ Base ./dict.jl:374
  [2] evaluate(f::Piecewise_Function, coordinates::DataFrame)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/0_structs_and_generic_reversals.jl:717
  [3] _broadcast_getindex_evalf
    @ ./broadcast.jl:648 [inlined]
  [4] _broadcast_getindex
    @ ./broadcast.jl:621 [inlined]
  [5] getindex
    @ ./broadcast.jl:575 [inlined]
  [6] macro expansion
    @ ./broadcast.jl:984 [inlined]
  [7] macro expansion
    @ ./simdloop.jl:77 [inlined]
  [8] copyto!(dest::Vector{Vector{Union{Float64, MultivariateFunction}}}, bc::Base.Broadcast.Broadcasted{Nothing, Tuple{Base.OneTo{Int64}}, typeof(evaluate), Tuple{Vector{Piecewise_Function}, Base.RefValue{DataFrame}}})
    @ Base.Broadcast ./broadcast.jl:983
  [9] copyto!
    @ ./broadcast.jl:936 [inlined]
 [10] copy
    @ ./broadcast.jl:908 [inlined]
 [11] materialize
    @ ./broadcast.jl:883 [inlined]
 [12] create_ols_approximation(dd::DataFrame, y::Symbol, model::Vector{Piecewise_Function}; allowrankdeficient::Bool)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/5_ols_regression.jl:43
 [13] create_ols_approximation
    @ ~/.julia/packages/MultivariateFunctions/a2IXB/src/5_ols_regression.jl:43 [inlined]
 [14] optimise_given_specific_split(dd::DataFrame, y::Symbol, array_of_funcs::Vector{Piecewise_Function}, ind::Int64, split_variable::Symbol, split_point::Float64, SplitFunction::typeof(MultivariateFunctions.add_split_with_max_function), removeSplitFunction::Bool)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:28
 [15] #56
    @ ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:36 [inlined]
 [16] optimize(f::MultivariateFunctions.var"#56#57"{DataFrame, Symbol, Vector{Piecewise_Function}, Int64, Symbol, typeof(MultivariateFunctions.add_split_with_max_function), Bool}, x_lower::Float64, x_upper::Float64, mo::Optim.Brent; rel_tol::Float64, abs_tol::Float64, iterations::Int64, store_trace::Bool, show_trace::Bool, callback::Nothing, show_every::Int64, extended_trace::Bool)
    @ Optim ~/.julia/packages/Optim/TNmSw/src/univariate/solvers/brent.jl:69
 [17] #optimize#80
    @ ~/.julia/packages/Optim/TNmSw/src/univariate/optimize/interface.jl:21 [inlined]
 [18] optimise_split(dd::DataFrame, y::Symbol, array_of_funcs::Vector{Piecewise_Function}, ind::Int64, split_variable::Symbol, rel_tol::Float64, SplitFunction::Function, removeSplitFunction::Bool)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:36
 [19] create_mars_spline(dd::DataFrame, y::Symbol, x_variables::Set{Symbol}, MaxM::Int64; rel_tol::Float64)
    @ MultivariateFunctions ~/.julia/packages/MultivariateFunctions/a2IXB/src/6_HighDimensionalApproximation.jl:104
 [20] top-level scope
    @ REPL[18]:1

Notes

  • versioninfo()
Julia Version 1.6.1
Commit 6aaedecc44 (2021-04-23 05:59 UTC)
Platform Info:
  OS: macOS (x86_64-apple-darwin18.7.0)
  CPU: Apple M1
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-11.0.1 (ORCJIT, westmere)

  • MultivariateFunctions v0.1.7

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.