Coder Social home page Coder Social logo

majianthu / aps2020 Goto Github PK

View Code? Open in Web Editor NEW
18.0 1.0 5.0 89 KB

Code for the paper 'Variable Selection with Copula Entropy' published on Chinese Journal of Applied Probability and Statistics

Home Page: https://arxiv.org/abs/1910.12389

License: GNU General Public License v3.0

R 100.00%
variable-selection feature-selection variable-importance feature-engineering copula-entropy mutual-information distance-correlation hsic

aps2020's Introduction

aps2020

This is the code for the paper 'Variable Selection with Copula Entropy' published on Chinese Journal of Applied Probability and Statistics. The preprint paper is available at here on ArXiv.

  • Ma, Jian. “Variable Selection with Copula Entropy.” Chinese Journal of Applied Probability and Statistics, 2021, 37(4): 405-420. See also arXiv preprint arXiv:1910.12389 (2019).

In the paper, three methods for variable selection are compared on the UCI heart disease data:

  • Copula Entropy [1],
  • Hilbert-Schimdt Independence Criterion (HSIC) [2,3],
  • Distance Correlation [4].

The following additional independence measures are also considered in this version of comparison experiment:

  • Heller-Heller-Gorfine Tests of Independence [5],
  • Hoeffding's D test [6],
  • Bergsma-Dassios T* sign covariance [7],
  • Ball correlation [8],
  • BET: Binary Expansion Testing [9],
  • qad: Quantification of Asymmetric Dependence [10],
  • MixedIndTests [11],
  • NNS: Nonlinear Nonparametric Statistics [12],
  • subcopula based dependence measures [13],
  • MDM: Mutual Independence Measure [14].

Copula Entropy does better than all the others measures in terms of predictibility and interpretability.

References

  1. Ma, J., & Sun, Z. (2011). Mutual Information Is Copula Entropy. Tsinghua Science & Technology, 16(1), 51–54. See also arXiv preprint arXiv:0808.0845 (2008).
  2. Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2007). A Kernel Statistical Test of Independence. In Advances in Neural Information Processing Systems 20 (Vol. 20, pp. 585–592).
  3. Pfister, N., Bühlmann, P., Schölkopf, B., & Peters, J. (2018). Kernel-based Tests for Joint Independence. Journal of The Royal Statistical Society Series B-Statistical Methodology, 80(1), 5–31.
  4. Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Annals of Statistics, 35(6), 2769–2794.
  5. Heller, R., Heller, Y., Kaufman, S., Brill, B., & Gorfine, M. (2016). Consistent distribution-free K-sample and independence tests for univariate random variables. Journal of Machine Learning Research, 17(1), 978–1031.
  6. Hoeffding, W. (1948). A Non-Parametric Test of Independence. Annals of Mathematical Statistics, 19(4), 546–557.
  7. Bergsma, W., & Dassios, A. (2014). A consistent test of independence based on a sign covariance related to Kendall’s tau. Bernoulli, 20(2), 1006–1028.
  8. Wenliang Pan, Xueqin Wang, Heping Zhang, Hongtu Zhu & Jin Zhu (2019). Ball Covariance: A Generic Measure of Dependence in Banach Space. Journal of the American Statistical Association, 115, 307-317.
  9. Zhang, K. (2019).BET on Independence. Journal of the American Statistical Association, Taylor & Francis, 114, 1620-1637.
  10. Junker, R. R.; Griessenberger, F. & Trutschnig, W. (2021). Estimating scale-invariant directed dependence of bivariate distributions. Computational Statistics & Data Analysis, 153, 107058.
  11. Genest, C.; Nešlehová, J. G.; Rémillard, B. & Murphy, O. A. Testing for independence in arbitrary distributions. Biometrika, 2019, 106, 47-68.
  12. Viole, Fred and Nawrocki, David N., Deriving Nonlinear Correlation Coefficients from Partial Moments (September 18, 2012). Available at SSRN: https://ssrn.com/abstract=2148522 or http://dx.doi.org/10.2139/ssrn.2148522
  13. Arturo Erdely. A subcopula based dependence measure. Kybernetika, 53(2), 231-243, 2017.
  14. Ze Jin, David S. Matteson. Generalizing Distance Covariance to Measure and Test Multivariate Mutual Dependence. arXiv preprint arXiv:1709.02532, 2017.

aps2020's People

Contributors

majianthu avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.