Coder Social home page Coder Social logo

mahi97 / evotorch Goto Github PK

View Code? Open in Web Editor NEW

This project forked from nnaisense/evotorch

0.0 0.0 0.0 3.2 MB

Advanced evolutionary computation library built directly on top of PyTorch, created at NNAISENSE.

Home Page: https://evotorch.ai

License: Apache License 2.0

Python 100.00%

evotorch's Introduction


Welcome to the EvoTorch project! EvoTorch is an open source evolutionary computation library developed at NNAISENSE, built on top of PyTorch. See the documentation for in-depth guidance about using EvoTorch, and join us on Slack for discussions.

Get started by installing EvoTorch:

pip install evotorch

With EvoTorch, one can solve various optimization problems, regardless of whether they are differentiable (i.e. allow gradient descent). Among the problem types that are solvable with EvoTorch are:

  • Black-box optimization problems (continuous or discrete)
  • Reinforcement learning tasks
  • Supervised learning tasks

Various evolutionary computation algorithms are available in EvoTorch:

  • Distribution-based search algorithms:
    • PGPE: Policy Gradients with Parameter-based Exploration.
    • XNES: Exponential Natural Evolution Strategies.
    • CMA-ES: Covariance Matrix Adaptation Evolution Strategies.
    • SNES: Separable Natural Evolution Strategies.
    • CEM: Cross Entropy Method.
  • Population-based search algorithms:
    • GeneticAlgorithm: A genetic algorithm implementation. Also supports multiple objectives, in which case it behaves like NSGA-II.
    • CoSyNE: Cooperative Synapse Neuroevolution.
    • MAPElites: Multi-dimensional Archive of Phenotypic Elites

Since all of these algorithms are implemented in PyTorch, they benefit from use of vectorization and parallelization on GPUs, drastically speeding up optimization when GPUs are available. Using Ray, EvoTorch scales these algorithms even further by splitting the workload across:

  • multiple CPUs
  • multiple GPUs
  • multiple computers in a Ray cluster

Examples

Below are some code examples that demonstrate the API of EvoTorch.

A black-box optimization example

Any objective function defined to work with PyTorch can be used directly with EvoTorch. A non-vectorized objective function simply receives a solution as a 1-dimensional torch tensor, and returns a fitness as a scalar. A vectorized objective function receives a batch of solutions as a 2-dimensional torch tensor, and returns a 1-dimensional tensor of fitnesses. The following example demonstrates how to define and solve the classical Rastrigin problem.

from evotorch import Problem
from evotorch.algorithms import SNES
from evotorch.logging import StdOutLogger, PandasLogger
import math
import matplotlib.pyplot as plt
import torch


# Declare the objective function
def rastrigin(x: torch.Tensor) -> torch.Tensor:
    A = 10
    (_, n) = x.shape
    return A * n + torch.sum((x**2) - A * torch.cos(2 * math.pi * x), 1)


# Declare the problem
problem = Problem(
    "min",
    rastrigin,
    initial_bounds=(-5.12, 5.12),
    solution_length=100,
    vectorized=True,
    # device="cuda:0"  # enable this line if you wish to use GPU
)

# Initialize the SNES algorithm to solve the problem
searcher = SNES(problem, popsize=1000, stdev_init=10.0)

# Initialize a standard output logger, and a pandas logger
_ = StdOutLogger(searcher, interval=10)
pandas_logger = PandasLogger(searcher)

# Run SNES for the specified amount of generations
searcher.run(2000)

# Get the progress of the evolution into a DataFrame with the
# help of the PandasLogger, and then plot the progress.
pandas_frame = pandas_logger.to_dataframe()
pandas_frame["best_eval"].plot()
plt.show()

A reinforcement learning example

The following example demonstrates how to solve reinforcement learning tasks that are available through the gym library.

from evotorch.algorithms import PGPE
from evotorch.logging import StdOutLogger, PicklingLogger
from evotorch.neuroevolution import GymNE

# Declare the problem to solve
problem = GymNE(
    env="Humanoid-v4",  # Solve the Humanoid-v4 task
    network="Linear(obs_length, act_length)",  # Linear policy
    observation_normalization=True,  # Normalize the policy inputs
    decrease_rewards_by=5.0,  # Decrease each reward by 5.0
    num_actors="max",  # Use all available CPUs
    # num_actors=4,    # Explicit setting. Use 4 actors.
)

# Instantiate a PGPE algorithm to solve the problem
searcher = PGPE(
    problem,
    # Base population size
    popsize=200,
    # For each generation, sample more solutions until the
    # number of simulator interactions reaches this threshold
    num_interactions=int(200 * 1000 * 0.75),
    # Stop re-sampling solutions if the current population size
    # reaches or exceeds this number.
    popsize_max=3200,
    # Learning rates
    center_learning_rate=0.0075,
    stdev_learning_rate=0.1,
    # Radius of the initial search distribution
    radius_init=0.27,
    # Use the ClipUp optimizer with the specified maximum speed
    optimizer="clipup",
    optimizer_config={"max_speed": 0.15},
)

# Instantiate a standard output logger
_ = StdOutLogger(searcher)

# Optional: Instantiate a logger to pickle and save the results periodically.
# In this example, among the saved results will be the center of the search
# distribution, since we are using PGPE which is distribution-based.
_ = PicklingLogger(searcher, interval=10)

# Run the algorithm for the specified amount of generations
searcher.run(500)

# Get the center point of the search distribution,
# obtain a policy out of that point, and visualize the
# agent using that policy.
center_solution = searcher.status["center"]
trained_policy = problem.make_net(center_solution)
problem.visualize(trained_policy)

More examples can be found here.

How to cite

If you use EvoTorch in your research, please consider citing our paper.

@article{evotorch2023arxiv,
  title={{EvoTorch}: Scalable Evolutionary Computation in {Python}},
  author={Toklu, Nihat Engin and Atkinson, Timothy and Micka, Vojt\v{e}ch and Liskowski, Pawe\l{} and Srivastava, Rupesh Kumar},
  journal={arXiv preprint},
  year={2023},
  note={https://arxiv.org/abs/2302.12600}
}

How to Contribute

Please see our contribution guidelines.

Authors

evotorch's People

Contributors

engintoklu avatar higgcz avatar naturalgradient avatar pre-commit-ci[bot] avatar flukeskywalker avatar galatolofederico avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.