Coder Social home page Coder Social logo

cg-webgl-2020's Introduction


Missile simulator
Missile simulator

Ballistic trajectory missile simulator.

A Javascript implementation of a missile simulator with GLSL shaders.

DescriptionHow To UseDemoLicense

Description

The project renders a mesh of some hills with a missile. When start is pressed the missile completes a parabolic trajectory until it crash.

The position in the trajectory is calculated in 2D on a parabola and then projected into 3D space on a plane that lays on the start and end points.

A height parameter is used to modify the apex of the parabola.

function getParabolicPoint(start, end, height, completion) {
    //Ballistic trajectory
    const direction = utils.subVector(end, start)
    const normDirection = utils.normalizeVector3([direction[0], 0, direction[2]])
    const distance = utils.modulusVector3(direction)
    const g = 9.81 * height

    const alpha = Math.asin((end[1] - start[1]) / distance)
    const gamma = Math.atan2(0.5 * g * Math.cos(alpha), 0.5 * g * Math.sin(alpha) + distance) + alpha
    const v0 = 0.5 * g * Math.cos(alpha) / Math.sin(gamma - alpha)

    const x = v0 * completion * Math.cos(gamma)
    const y = v0 * completion * Math.sin(gamma) - 0.5 * g * Math.pow(completion, 2)

    return utils.sumVector(start, [x * normDirection[0], y, x * normDirection[2]])
}

To select the start and ending point a ray is unprojected from where the user clicked into the 3D world.

The ray vector (a point into 2D space is a line in 3D space) is extended utils.scalarVector3(dirNorm, 1000) to intersect the hills' mesh.

function unprojectScreenPoint(mesh, x, y) {
    //Ray-tracing algorithm
    const cm = getCameraAndMatrix()
    const worldMatrix = utils.MakeWorld(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1)
    const viewWorldMatrix = utils.multiplyMatrices(worldMatrix, cm.viewMatrix)
    const projectionMatrix = utils.multiplyMatrices(cm.perspectiveMatrix, viewWorldMatrix)

    const unprojectMatrix = utils.invertMatrix(projectionMatrix)
    const screenCoords = [x, y, 1.0, 1.0]
    const unprojectedRaypoint = utils.multiplyMatrixVector(unprojectMatrix, screenCoords)
    const normUnprojectedRaypoint = [unprojectedRaypoint[0] / unprojectedRaypoint[3],
        unprojectedRaypoint[1] / unprojectedRaypoint[3],
        unprojectedRaypoint[2] / unprojectedRaypoint[3]]

    const dirNorm = utils.normalizeVector3(utils.subVector(normUnprojectedRaypoint, cm.cameraPosition))
    const dirMax = utils.scalarVector3(dirNorm, 1000)
    const rayEnd = utils.sumVector(dirMax, cm.cameraPosition)
    return checkCollision(mesh, cm.cameraPosition, rayEnd)
}

To check is there was a collision between them is used the Möller–Trumbore algorithm, to cite Wikipedia:

The Möller–Trumbore ray-triangle intersection algorithm, named after its inventors Tomas Möller and Ben Trumbore, is a fast method for calculating the intersection of a ray and a triangle in three dimensions without needing precomputation of the plane equation of the plane containing the triangle.

The point is later placed on the point where the collision happened.

function checkCollision(mesh, position, nextPosition) {
    //Möller–Trumbore algorithm
    const vertices = mesh.vertices, indices = mesh.indices, e = 0.0001
    for (let i = 0; i < indices.length; i += 3) {
        const v0 = [vertices[indices[i] * 3], vertices[indices[i] * 3 + 1], vertices[indices[i] * 3 + 2]]
        const v1 = [vertices[indices[i + 1] * 3], vertices[indices[i + 1] * 3 + 1], vertices[indices[i + 1] * 3 + 2]]
        const v2 = [vertices[indices[i + 2] * 3], vertices[indices[i + 2] * 3 + 1], vertices[indices[i + 2] * 3 + 2]]

        const v1_0 = utils.subVector(v1, v0)
        const v2_0 = utils.subVector(v2, v0)
        const h = utils.crossVector(nextPosition, v2_0)
        const a = utils.dotVector(v1_0, h)
        if (Math.abs(a) < e) continue

        const f = 1 / a
        const s = utils.subVector(position, v0)
        const u = f * utils.dotVector(s, h)
        if (u < 0.0 || u > 1.0) continue
        const q = utils.crossVector(s, v1_0)
        const v = f * utils.dotVector(nextPosition, q)
        if (v < 0.0 || u + v > 1.0) continue

        const t = f * utils.dotVector(v2_0, q)
        if (t > e) return utils.sumVector(position, utils.scalarVector3(nextPosition, t))
    }
    return false
}

How To Use

You can find it here.

Demo

License

MIT

cg-webgl-2020's People

Contributors

lrsb avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.