Coder Social home page Coder Social logo

numpyviz's Introduction

This is a program that helps to visualise methods of numpy arrays. It is designed to work in 3 dimensions and can also be extended up to 6 dimensions.

Installation

git + clone https://github.com/loijord/numpyviz
cd numpyviz

Requirements

matplotlib == 3.3.0
numpy == 1.19.1

Usage

Import these packages at the beginning of file:

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

Every instance of VisualArray has an arr attribute which is numpy array. It can be visualised after colors attribute is assigned.

Demo

This example demonstrates a very basic usage of VisualArray initialisation and color assignment

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

fig = plt.figure()
titles = ['demo1', 'demo2']

for i, title in enumerate(titles):
    ax = fig.add_subplot(1, 2, 1 + i, projection='3d')
    ax.set_title(title)
    arr = np.arange(24).reshape((2, 3, 4))
    va = VisualArray(arr, fig=fig, ax=ax)
    cells = va.get_indices()[::5] # make some fun pattern
    va.set_colors(cells.T, color='yellow', basecolor='lightblue')
    ax.dist = 15
    va.vizualize(fixview=True)

plt.show()
# va.get_indices()[::5]:
''' 
[[0 0 0]
 [0 1 1]
 [0 2 2]
 [1 0 3]
 [1 2 0]]'''

Example 1

arr = np.arange(90).reshape((6,3,5))
va = VisualArray(arr)
coords = va.get_indices() #indices of every cell
cells = coords[np.sum(coords, axis=1) % 3 == 0]
va.set_colors(cells.T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)
plt.show()

Example 2

Alternative way to get indices

arr = np.random.randint(100, size=60).reshape((2,6,5))
coords = np.array(list(np.ndindex(arr.shape)))
cells = coords[np.sum(coords, axis=1) % 3 == 0]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1, projection='3d')
ax.set_title('top')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(cells.T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)

ax = fig.add_subplot(2, 1, 2, projection='3d')
ax.set_title('bottom')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(cells.T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)
ax.elev = -30
plt.show()

Example 3

arr = np.arange(64).reshape((1,8,8))
va = VisualArray(arr)
cells = va.get_indices_chequerwise(window=(1,1,1))
va.set_colors(cells.T, color='white', basecolor='grey')
va.vizualize(fixview=True, axis_labels=(None,None,None))
va.ax.dist = 12.5 #zoom out a little
plt.show()

Example 4

import matplotlib.gridspec as gridspec
arr = np.random.randint(99, size=24).reshape((3, 4, 2))
fig = plt.figure(constrained_layout=True)
spec = gridspec.GridSpec(ncols=5, nrows=1, figure=fig)
ax = fig.add_subplot(spec[0], projection='3d')
ax.set_title(f'body of shape={arr.shape}')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='lawngreen', basecolor='aqua')
va.mix_colors(va.get_indices_chequerwise((1,1,arr.shape[2])).T, 'black')
va.vizualize(fixview=True, axis_labels=('axis=0','axis=1','axis=2'))

ax = fig.add_subplot(spec[1:], projection='3d')
ax.set_title(f'body of shape={arr.flatten().shape}')
va2 = VisualArray(va.arr.flatten(), fig=fig, ax=ax)
va2.set_colors(va2.get_indices().T, color='lawngreen', basecolor='aqua')
va2.mix_colors(va2.get_indices_chequerwise((1,1,arr.shape[2])).T, 'black')
va2.vizualize(fixview=True, axis_labels=(None,None,'axis=0'))
ax.dist = 8
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Example 5

arr = np.random.randint(99, size=1260).reshape((10,9,14))
shape = (7,2,3,2,5,3)

fig = plt.figure('dimension')
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.set_title(f'body of shape={arr.shape}')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='lawngreen', basecolor='aqua')
va.vizualize(fixview=False, axis_labels=('axis=0','axis=1','axis=2'))

ax = fig.add_subplot(1, 2, 2, projection='3d')
ax.set_title(f'body of shape={shape}')
va2 = VisualArray(va.arr, va.colors, fig=fig, ax=ax)
va2.permute(shape)
va2.vizualize(fixview=True, axis_labels=('axis=0','axis=1','axis=2'))
plt.get_current_fig_manager().window.state('zoomed')
ax.azim, ax.elev = -115, 24
plt.show()

Example 6 (NEW!)

# After some break, improve visual view of axis labels and upload demo for this problem:
# https://stackoverflow.com/questions/70444407/why-is-4d-realisation-of-max-pooling-in-numpy-misleading

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

arr = np.random.randint(99, size=(1,8,12))
w = (2, 4)

print(arr.reshape(4, 2, 3, 4))
print('-'*50)
print(arr.reshape(4, 2, 3, 4).max(axis=1))
print('-'*50)
print(arr.reshape(4, 2, 3, 4).max(axis=3))
print('-'*50)
print(arr.reshape(4, 2, 3, 4).max(axis=(1,3)))


fig = plt.figure()
ax = fig.add_subplot(1, 3, 1, projection='3d')
ax.set_title('arr')
va = VisualArray(arr, fig=fig, ax=ax) #indices of every cell
cells = va.get_indices_chequerwise(window=(1,)+w)
va.set_colors(cells.T, color='lawngreen', basecolor='aqua')
va.vizualize(fixview=True, axis_labels=(None, 'axis=0', 'axis=1'))

ax = fig.add_subplot(1, 3, 2, projection='3d')
va2 = VisualArray(va.arr, va.colors, fig=fig, ax=ax) #shape: (1, 8, 12)
shape = (va2.arr.shape[1]//w[0], w[0], va2.arr.shape[2]//w[1], w[1])
ax.set_title(f'arr.reshape{shape}')
va2.reshape(shape) #shape: (4, 2, 3, 4)
va2.permute(shape)
va2.vizualize(fixview=True, axis_labels=('axis=0,3','axis=1','axis=2'))

def argmin(arr):
    #bug...
    a3 = arr.argmin(axis=(1, 3))
    a1, a2 = np.indices((arr.shape[0], arr.shape[2]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x, y, z

ax = fig.add_subplot(1, 3, 3, projection='3d')
arr3 = arr.reshape(shape).max(axis=(1, 3))[:,:,None]
va3 = VisualArray(arr3, fig=fig, ax=ax) #indices of every cell

cells = va3.get_indices_chequerwise(window=(1,1,1))
va3.set_colors(cells.T, color='lawngreen', basecolor='aqua')
dark_cells = va3.get_indices_chequerwise(window=(1,3,1))
va3.mix_colors(dark_cells.T, 'black', r=0.4)

va3.ax.set_title(f'arr.reshape{shape}.max(axis=(0,2))')
va3.ax.dist = 15
va3.vizualize(fixview=True, axis_labels=('axis=3', 'axis=1', None))

print(f'arr = np.random.randint(99, size=(1,8,12)) =')
print(arr)
print('-'*50)
print(f'arr.reshape{shape}.max(axis=(0, 2)) =')
print(arr.reshape(shape).max(axis=(0, 2)))
print('-'*50)
print(f'arr.reshape{shape}.max(axis=(1, 3)) =')
print(arr.reshape(shape).max(axis=(1, 3)))
plt.show()

Example 7

def argmin_axis0(arr):
    a1 = np.argmin(arr, axis=0)
    a2, a3 = np.indices((arr.shape[1], arr.shape[2]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x,y,z

def argmin_axis1(arr):
    a2 = np.argmin(arr, axis=1)
    a1, a3 = np.indices((arr.shape[0], arr.shape[2]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x, y, z

def argmin_axis2(arr):
    a3 = np.argmin(arr, axis=2)
    a1, a2 = np.indices((arr.shape[0], arr.shape[1]))
    x, y, z = zip(*np.broadcast(a1, a2, a3))
    return x, y, z

fig = plt.figure()
arr = np.random.randint(100, size=60).reshape((2,6,5))
titles = ['np.argmin(arr, axis=0)', 'np.argmin(arr, axis=1)', 'np.argmin(arr, axis=2)']
result_titles = ['result along axis=0', 'result along axis=1', 'result along axis=2']
cells = [argmin_axis0(arr), argmin_axis1(arr), argmin_axis2(arr)]
cell_results = [np.argmin(arr, axis=0)[None,:,:], np.argmin(arr, axis=1)[:,None,:], np.argmin(arr, axis=2)[:,:,None]]
axis_names = [(None, 'axis=0', 'axis=1'), ('axis=0', None, 'axis=1'), ('axis=0', 'axis=1', None)]

for i in range(3):
    ax = fig.add_subplot(2, 3, 1 + i, projection='3d')
    ax.set_title(titles[i])
    va = VisualArray(arr, fig=fig, ax=ax)
    va.set_colors(cells[i], color='yellow', basecolor='lightblue')
    va.vizualize(fixview=True)

for i in range(3):
    ax = fig.add_subplot(2, 3, 4 + i, projection='3d')
    ax.set_title(result_titles[i])
    va = VisualArray(cell_results[i], fig=fig, ax=ax)
    va.set_colors(basecolor='lightgreen')
    va.vizualize(fixview=True, axis_labels=axis_names[i])

plt.show()

Example 8

arr = np.array([[r'$\times$', r'$x^2$', r'$y^2$', r'$z^2$', r'$-xy$', r'$-yz$', r'$-xz$'],
                [r'$x$', r'$x^3$', r'$xy^2$', r'$xz^2$', r'$-x^2y$', r'$-xyz$', r'$-x^2z$'],
                [r'$y$', r'$x^2y$', r'$y^3$', r'$yz^2$', r'$-xy^2$', r'$-y^2z$', r'$-xyz$'],
                [r'$z$', r'$x^2z$', r'$y^2z$', r'$z^3$', r'$-xyz$', r'$-yz^2$', r'$-xz^2$']])
va = VisualArray(arr)
blue = [(0,i,0) for i in range(1,4)] + [(0,0,i) for i in range(1,7)]
lime = [(0,1,1), (0,2,2), (0,3,3), (0,1,-2), (0,2,-1), (0,3,-3)]
va.set_colors(zip(*blue), color='lightblue', basecolor='white')
va.set_colors(zip(*lime), color='lime')
va.set_colors(zip(*[(0,2,-2), (0,-1,2)]), color='#ffff00')
va.set_colors(zip(*[(0,1,2), (0,2,4)]), color='#dddd00')
va.set_colors(zip(*[(0,1,3), (0,-1,-1)]), color='#bbbb00')
va.set_colors(zip(*[(0,1,4), (0,2,1)]), color='#999900')
va.set_colors(zip(*[(0,1,6), (0,-1,1)]), color='#777700')
va.set_colors(zip(*[(0,2,3), (0,-1,-2)]), color='#555500')
va.vizualize(fixview=True,
             axis_labels = [None, '$x+y+z$', r'$' + r'\!'*35 + r' x^2+y^2+z^2-xy-yz-zx$'],
             scale=0.4)
va.ax.set_title('Why $(x+y+z)(x^2+y^2+z^2-xy-yz-zx) = x^3+y^3+z^3-3xyz$? \n Simplify monochromatic pairs of yellow cubes!')
va.ax.azim, va.ax.elev = -108, 54
plt.show()

Example 9a

"""this is an example that demonstrates how to multiply five polynomials"""
arr = np.array([[[r'$x^2y$', r'$xy^2$'],[r'$xy^2$', r'$y^3$']],
                [[r'$x^3$', r'$x^2y$'],[r'$x^2y$', r'$xy^2$']]])
va = VisualArray(arr)
va.set_colors(zip(*[(0,1,1)]), color='#6666ff')
va.set_colors(zip(*[(1,0,0)]), color='#ff66ff')
va.set_colors(zip(*[(0,0,0),(1,1,0),(1,0,1)]), color='#66ff66')
va.set_colors(zip(*[(0,1,0),(0,0,1),(1,1,1)]), color='#66ffff')
va.vizualize(fixview=False,
             axis_labels = ['$x+y$', '$x+y$', '$x+y$'],
             scale=0.7)
va.ax.set_title('Why $(x+y)^3 = x^3+3x^2y+3xy^2+y^3$?')
plt.show()

Example 9b

"""this is an example that demonstrates how to multiply five polynomials"""
fig = plt.figure()
arr = np.array([[[r'$x^3y^2$', r'$x^2y^3$'],[r'$x^2y^3$', r'$xy^4$']],
                [[r'$x^2y^3$', r'$xy^4$'],[r'$xy^4$', r'$y^5$']],
                [[r'$x^4y$', r'$x^3y^2$'],[r'$x^3y^2$', r'$x^2y^3$']],
                [[r'$x^3y^2$', r'$x^2y^3$'],[r'$x^2y^3$', r'$xy^4$']],
                [[r'$x^4y$', r'$x^3y^2$'], [r'$x^3y^2$', r'$x^2y^3$']],
                [[r'$x^3y^2$', r'$x^2y^3$'], [r'$x^2y^3$', r'$xy^4$']],
                [[r'$x^5$', r'$x^4y$'], [r'$x^4y$', r'$x^3y^2$']],
                [[r'$x^4y$', r'$x^3y^2$'], [r'$x^3y^2$', r'$x^2y^3$']]])

ax = fig.add_subplot(1, 2, 1, projection='3d')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(np.where(arr=='$x^5$'), color='#6666ff')
va.set_colors(np.where(arr=='$x^4y$'), color='#66ff66')
va.set_colors(np.where(arr=='$x^3y^2$'), color='#ff6666')
va.set_colors(np.where(arr=='$x^2y^3$'), color='#ffff66')
va.set_colors(np.where(arr=='$xy^4$'), color='#ff66ff')
va.set_colors(np.where(arr=='$y^5$'), color='#66ffff')
va.permute(shape=(2,2,2,2,2))
va.vizualize(fixview=True,
             axis_labels = [r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!x+y$'],
             scale=0.6)
va.ax.set_title(r'Why $(x+y)^5 = x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5$?' +'\n' +
                r'Multiply each $2\times 2 \times 2$ subcube by $x^2$, $xy$, $xy$, $y^2$' +
                '\n' + r'Then reduce monochromatic terms')
va.ax.dist = 11.5

ax = fig.add_subplot(1, 2, 2, projection='3d')
va = VisualArray(arr, fig=fig, ax=ax)
va.set_colors(np.where(arr=='$x^5$'), color='#6666ff')
va.set_colors(np.where(arr=='$x^4y$'), color='#66ff66')
va.set_colors(np.where(arr=='$x^3y^2$'), color='#ff6666')
va.set_colors(np.where(arr=='$x^2y^3$'), color='#ffff66')
va.set_colors(np.where(arr=='$xy^4$'), color='#ff66ff')
va.set_colors(np.where(arr=='$y^5$'), color='#66ffff')
va.permute(shape=(2,2,2,2,2))
va.vizualize(fixview=True,
             axis_labels = [r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!'+'x(x+y)\!\!+\!\!y(x+y)$',
                            r'$\!\!x+y$'],
             scale=0.6)
va.ax.set_title(r'BACKSIDE CAMERA')

va.ax.azim, va.ax.elev, va.ax.dist = -55, 35, 11.5
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Example 10a

Warning: this might be quite slow to render visual array of shape (32, 32, 3)

def tohex(arr):
    #shape of array: (X,Y,3)
    #this is a vectorized version of arr of rgb -> arr of hex color codes
    def tohexarr(x):
        form = list('#000000')
        c = np.base_repr(x, base=16)
        form[-len(c):] = list(c)
        return ''.join(form)
    arr = np.asarray(arr, dtype='uint32')
    hexarr = np.vectorize(tohexarr)
    return hexarr((arr[:, :, 0]<<16) + (arr[:, :, 1]<<8) + arr[:, :, 2])\

from PIL import Image
test_image = Image.open('cat.jpg')
test_image = test_image.resize((32,32), Image.ANTIALIAS)
test_image = np.array(test_image).astype(int)

va = VisualArray(test_image)
coords = va.get_indices()
eye = np.eye(3, dtype=int)

# input of set_colors can be another array of len(cellsT)
for i in range(3):
    color = np.expand_dims(test_image[:,:,i], axis=2) * eye[i]
    cellsT = coords[coords[:, 2] == i].T #list of coords where z = i
    va.set_colors(cellsT, color=tohex(color)[cellsT[0], cellsT[1]])
va.vizualize(fixview=True, scale=0.7, axis_labels=(None,None,None))
va.ax.azim = -140 #change to 40 to see another back side
va.ax.elev = 20
va.ax.dist = 8 #zoom in a little
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Example 10b

Warning: this might be quite slow to render visual array of shape (32, 32, 1). If you need to convert single color code to rgb, use:

(np.array(matplotlib.colors.to_rgb('#EFF1DE'))*255).astype(int)

def tohex(arr):
    def tohexarr(x):
        form = list('#000000')
        c = np.base_repr(x, base=16)
        form[-len(c):] = list(c)
        return ''.join(form)
    arr = np.asarray(arr, dtype='uint32')
    hexarr = np.vectorize(tohexarr)
    return hexarr((arr[:, :, 0]<<16) + (arr[:, :, 1]<<8) + arr[:, :, 2])

def tolabels(arr):
    def tolabelarr(x):
        return r'\begin{array}{l}\,\,\sharp ' + x[1:4] + r'\\ \,\,\,\, ' + x[4:7] + r'\\ ' + r'\\ ' + r'\\ ' + r'\end{array}'
    labelarr = np.vectorize(tolabelarr)
    return labelarr(arr)

from PIL import Image
test_image = Image.open('cat.jpg')
test_image = test_image.resize((32, 32), Image.ANTIALIAS)
test_image = np.array(test_image).astype(int)
arr = tohex(test_image)

va = VisualArray(arr)
cells = va.get_indices()
x,y,z = cells.T
va.set_colors(cells.T, color=va.arr[x,y,z])
va.arr = tolabels(va.arr)
va.vizualize(fixview=True, scale=0.35, axis_labels=(None,None,None))
va.ax.dist = 11.5 #zoom out a little; change to 3.5 for higher zoom
plt.get_current_fig_manager().window.state('zoomed')
plt.show()

Sputniks

I've used to call it Sputnik1 because it helped to visualise a first quite hard problem on StackOverflow

import numpy as np
import matplotlib.pyplot as plt
from numpyviz import VisualArray

v = np.array([[2,5,  3,5,  1,8],
              [4,6,  2,7,  5,9],
              [1,8,  2,3,  1,4],
              [2,8,  1,4,  3,5],
              [5,7,  2,3,  7,8],
              [1,2,  4,6,  3,5],
              [3,5,  2,8,  1,4]])

s = np.sort(v, axis=1)
arr1 = v[(s[:,:-1] != s[:,1:]).all(1)]
arr2 = arr1.reshape(-1, 3, 2)

fig = plt.figure()
ax = fig.add_subplot(1, 2, 1, projection='3d')
ax.set_title('Initial array')
va = VisualArray(arr1, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True, axis_labels=(None, 'axis=0', 'axis=1'))
ax.dist = 12

ax = fig.add_subplot(1, 2, 2, projection='3d')
ax.set_title('Reshaped array')
va = VisualArray(arr2, fig=fig, ax=ax)
va.set_colors(va.get_indices().T, color='yellow', basecolor='lightblue')
va.vizualize(fixview=True)
ax.dist = 12
plt.show()

All the illustrations of Sputniks have its home at sputnik_gallery.

As well as their scripts sputnik_scripts.

numpyviz's People

Contributors

loijord avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.