Coder Social home page Coder Social logo

juampamuc / proxy-anchor-cvpr2020 Goto Github PK

View Code? Open in Web Editor NEW

This project forked from tjddus9597/proxy-anchor-cvpr2020

0.0 1.0 0.0 197 KB

Official PyTorch Implementation of Proxy Anchor Loss for Deep Metric Learning, CVPR 2020

License: MIT License

Python 100.00%

proxy-anchor-cvpr2020's Introduction

Proxy Anchor Loss for Deep Metric Learning

Official PyTorch implementation of CVPR 2020 paper Proxy Anchor Loss for Deep Metric Learning.

A standard embedding network trained with Proxy-Anchor Loss achieves SOTA performance and most quickly converges.

This repository provides source code of experiments on four datasets (CUB-200-2011, Cars-196, Stanford Online Products and In-shop) and pretrained models.

Accuracy in Recall@1 versus training time on the Cars-196

graph

Requirements

Datasets

  1. Download four public benchmarks for deep metric learning

  2. Extract the tgz or zip file into ./data/ (Exceptionally, for Cars-196, put the files in a ./data/cars196)

[Notice!] I found that the link that was previously uploaded for the CUB dataset was incorrect, so I corrected the link. (CUB-200 -> CUB-200-2011) If you have previously downloaded the CUB dataset from my repository, please download it again. Thanks to myeongjun for reporting this issue!

Training Embedding Network

Note that a sufficiently large batch size and good parameters resulted in better overall performance than that described in the paper. You can download the trained model through the hyperlink in the table.

CUB-200-2011

  • Train a embedding network of Inception-BN (d=512) using Proxy-Anchor loss
python train.py --gpu-id 0 \
                --loss Proxy_Anchor \
                --model bn_inception \
                --embedding-size 512 \
                --batch-size 180 \
                --lr 1e-4 \
                --dataset cub \
                --warm 1 \
                --bn-freeze 1 \
                --lr-decay-step 10
  • Train a embedding network of ResNet-50 (d=512) using Proxy-Anchor loss
python train.py --gpu-id 0 \
                --loss Proxy_Anchor \
                --model resnet50 \
                --embedding-size 512 \
                --batch-size 120 \
                --lr 1e-4 \
                --dataset cub \
                --warm 5 \
                --bn-freeze 1 \
                --lr-decay-step 5
Method Backbone R@1 R@2 R@4 R@8
Proxy-Anchor512 Inception-BN 69.1 78.9 86.1 91.2
Proxy-Anchor512 ResNet-50 69.9 79.6 86.6 91.4

Cars-196

  • Train a embedding network of Inception-BN (d=512) using Proxy-Anchor loss
python train.py --gpu-id 0 \
                --loss Proxy_Anchor \
                --model bn_inception \
                --embedding-size 512 \
                --batch-size 180 \
                --lr 1e-4 \
                --dataset cars \
                --warm 1 \
                --bn-freeze 1 \
                --lr-decay-step 20
  • Train a embedding network of ResNet-50 (d=512) using Proxy-Anchor loss
python train.py --gpu-id 0 \
                --loss Proxy_Anchor \
                --model resnet50 \
                --embedding-size 512 \
                --batch-size 120 \
                --lr 1e-4 \
                --dataset cars \
                --warm 5 \
                --bn-freeze 1 \
                --lr-decay-step 10 
Method Backbone R@1 R@2 R@4 R@8
Proxy-Anchor512 Inception-BN 86.4 91.9 95.0 97.0
Proxy-Anchor512 ResNet-50 87.7 92.7 95.5 97.3

Stanford Online Products

  • Train a embedding network of Inception-BN (d=512) using Proxy-Anchor loss
python train.py --gpu-id 0 \
                --loss Proxy_Anchor \
                --model bn_inception \
                --embedding-size 512 \
                --batch-size 180 \
                --lr 6e-4 \
                --dataset SOP \
                --warm 1 \
                --bn-freeze 0 \
                --lr-decay-step 20 \
                --lr-decay-gamma 0.25
Method Backbone R@1 R@10 R@100 R@1000
Proxy-Anchor512 Inception-BN 79.2 90.7 96.2 98.6

In-Shop Clothes Retrieval

  • Train a embedding network of Inception-BN (d=512) using Proxy-Anchor loss
python train.py --gpu-id 0 \
                --loss Proxy_Anchor \
                --model bn_inception \
                --embedding-size 512 \
                --batch-size 180 \
                --lr 6e-4 \
                --dataset Inshop \
                --warm 1 \
                --bn-freeze 0 \
                --lr-decay-step 20 \
                --lr-decay-gamma 0.25
Method Backbone R@1 R@10 R@20 R@30 R@40
Proxy-Anchor512 Inception-BN 91.9 98.1 98.7 99.0 99.1

Evaluating Image Retrieval

Follow the below steps to evaluate the provided pretrained model or your trained model.

Trained best model will be saved in the ./logs/folder_name.

# The parameters should be changed according to the model to be evaluated.
python evaluate.py --gpu-id 0 \
                   --batch-size 120 \
                   --model bn_inception \
                   --embedding-size 512 \
                   --dataset cub \
                   --resume /set/your/model/path/best_model.pth

Acknowledgements

Our code is modified and adapted on these great repositories:

Other Implementations

Thanks Geonmo and nixingyang for the good implementation :D

New Method for Further Improvement

Recently, our paper Embedding Transfer with Label Relaxation for Improved Metric Learning which presents the new knowledge distillation method for metric learning is accepted and will be presented at CVPR21. Our new method can greatly improve the performance, or reduce sizes and output dimensions of embedding networks with negligible performance degradation. If you are also interested in new knowlege distillation method for metric learning, please check the following arxiv and repository links. The new repository has been refactored based on the Proxy-Anchor Loss implementation, so those who have used this repository will be able to use new code easily. :D

Citation

If you use this method or this code in your research, please cite as:

@InProceedings{Kim_2020_CVPR,
  author = {Kim, Sungyeon and Kim, Dongwon and Cho, Minsu and Kwak, Suha},
  title = {Proxy Anchor Loss for Deep Metric Learning},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}

proxy-anchor-cvpr2020's People

Contributors

jdhao avatar kdwonn avatar tjddus9597 avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.