Coder Social home page Coder Social logo

jjboy / demystifylocalvit Goto Github PK

View Code? Open in Web Editor NEW

This project forked from atten4vis/demystifylocalvit

0.0 0.0 0.0 9.72 MB

Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

License: MIT License

Python 43.11% Shell 0.07% Jupyter Notebook 56.75% Dockerfile 0.04% Makefile 0.01% Batchfile 0.02%

demystifylocalvit's Introduction

Demysitifing Local Vision Transformer, arxiv

This is the official PyTorch implementation of our paper. We simply replace local self attention by (dynamic) depth-wise convolution with lower computational cost. The performance is on par with the Swin Transformer.

Besides, the main contribution of our paper is the theorical and detailed comparison between depth-wise convolution and local self attention from three aspects: sparse connectivity, weight sharing and dynamic weight. By this paper, we want community to rethinking the local self attention and depth-wise convolution, and the basic model architeture designing rules.

Codes and models for object detection and semantic segmentation are avaliable in Detection and Segmentation.

We also give MLP based Swin Transformer models and Inhomogenous dynamic convolution in the ablation studies. These codes and models will coming soon.

Reference

@article{han2021demystifying,
  title={Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight},
  author={Han, Qi and Fan, Zejia and Dai, Qi and Sun, Lei and Cheng, Ming-Ming and Liu, Jiaying and Wang, Jingdong},
  journal={arXiv preprint arXiv:2106.04263},
  year={2021}
}

1. Requirements

torch>=1.5.0, torchvision, timm, pyyaml; apex-amp

data perpare: ImageNet dataset with the following structure:

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

2. Trainning

For tiny model, we train with batch-size 128 on 8 GPUs. When trainning base model, we use batch-size 64 on 16 GPUs with OpenMPI to keep the total batch-size unchanged. (With the same trainning setting, the base model couldn't train with AMP due to the anomalous gradient values.)

Please change the data path in sh scripts first.

For tiny model:

bash scripts/run_dwnet_tiny_patch4_window7_224.sh 
bash scripts/run_dynamic_dwnet_tiny_patch4_window7_224.sh

For base model, use multi node with OpenMPI:

bash scripts/run_dwnet_base_patch4_window7_224.sh 
bash scripts/run_dynamic_dwnet_base_patch4_window7_224.sh

3. Evaluation

python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --cfg configs/change_to_config_file --resume /path/to/model --data-path /path/to/imagenet --eval

4. Models

Models are provided by training on ImageNet with resolution 224.

Model #params FLOPs Top1 Acc Download
dwnet_tiny 24M 3.8G 81.2 github
dynamic_dwnet_tiny 51M 3.8G 81.8 github
dwnet_base 74M 12.9G 83.2 github
dynamic_dwnet_base 162M 13.0G 83.2 github

Detection (see Detection for details):

Backbone Pretrain Lr Schd box mAP mask mAP #params FLOPs config model
DWNet-T ImageNet-1K 3x 49.9 43.4 82M 730G config github
DWNet-B ImageNet-1K 3x 51.0 44.1 132M 924G config github
Dynamic-DWNet-T ImageNet-1K 3x 50.5 43.7 108M 730G config github
Dynamic-DWNet-B ImageNet-1K 3x 51.2 44.4 219M 924G config github

Segmentation (see Segmentation for details):

Backbone Pretrain Lr Schd mIoU #params FLOPs config model
DWNet-T ImageNet-1K 160K 45.5 56M 928G config github
DWNet-B ImageNet-1K 160K 48.3 108M 1129G config github
Dynamic-DWNet-T ImageNet-1K 160K 45.7 83M 928G config github
Dynamic-DWNet-B ImageNet-1K 160K 48.0 195M 1129G config github

LICENSE

This repo is under the MIT license. Some codes are borrow from Swin Transformer.

demystifylocalvit's People

Contributors

hanqer avatar welleast avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.