Coder Social home page Coder Social logo

ivancho523 / aunit Goto Github PK

View Code? Open in Web Editor NEW

This project forked from bxparks/aunit

0.0 2.0 0.0 3.94 MB

Unit testing framework for Arduino platforms inspired by ArduinoUnit and Google Test. Used by the AUniter project to provide continuous integration.

License: MIT License

C 8.72% C++ 89.57% Groovy 0.80% Makefile 0.91%

aunit's Introduction

AUnit

A unit testing framework for Arduino platforms inspired by ArduinoUnit and Google Test. The unit tests run in the embedded controller, not in a simulator or emulator. It is almost a drop-in replacement of ArduinoUnit with some advantages. AUnit supports timeouts and test fixtures. It somtimes consume 50% less flash memory on the AVR platform, and it has been tested to work on the AVR, ESP8266, ESP32 and Teensy platforms. The sister AUniter project provides command line tools to verify, upload and validate the unit tests. The AUniter tools can be used in a continuous integration system like Jenkins.

Version: 1.2.1 (2018-12-22)

AUniter Jenkins Badge

Summary

AUnit (rhymes with "JUnit") is a unit testing framework inspired by ArduinoUnit and Google Test. It is almost a drop-in replacement for the API implemented by ArduinoUnit 2.2. Just like ArduinoUnit, the unit tests run directly on the microcontrollers themselves, not on emulators or simulators. The test results are printed on the Serial object by default, but can be redirected to another Print object.

AUnit was created to solve 3 problems with ArduinoUnit 2.2:

  • ArduinoUnit consumes too much flash memory on an AVR platform (e.g. Arduino UNO, Nano) as explained in ArduinoUnit#70.
  • ArduinoUnit does not compile on the ESP8266 platform (see ArduinoUnit#68, ArduinoUnit#55, ArduinoUnit#54).
  • ArduinoUnit does not provide an easy way to create tests using fixtures, equivalent to the TEST_F() macro in Google Test.

In contrast:

  • AUnit consumes as much as 65% less flash memory than ArduinoUnit 2.2 on the AVR platform. On Teensy-ARM, the savings can be as much as 30%.
  • AUnit has been tested on AVR, Teensy-ARM and ESP8266.
  • AUnit implements the testF() and testingF() macros to use fixtures.

The AUniter command line tools can compile the unit tests, upload them to Arduino boards attached to the serial ports of the local machine, and validate the output of the AUnit test runner. In addition, the AUniter script can be integrated into a Jenkins continuous integration service running on the local machine, and the unit tests can be monitored automatically.

ArduinoUnit Compatible Features

For basic unit tests written using ArduinoUnit 2.2, only two changes are required to convert to AUnit:

  • #include <ArduinoUnit.h> -> #include <AUnit.h>
  • Test::run() -> aunit::TestRunner::run()

Most of the core macros are compatible between ArduinoUnit and AUnit:

  • test()
  • testing()
  • assertXxx()
  • Meta Assertions
    • checkTestXxx()
    • assertTestXxx()
  • externTest()
  • externTesting()

AUnit also supports exclude and include filters:

  • TestRunner::exclude()
  • TestRunner::include()

The various assertion and test status messages can be enabled or disabled using the Verbosity flags on per test basis:

  • enableVerbosity()
  • disableVerbosity()

Missing Features

Here are the features which have not been ported over from ArduinoUnit 2.2:

  • ArduinoUnit supports multiple * wildcards in its exclude() and include() methods. AUnit supports only a single * wildcard and it must occur at the end if present.

Added Features

Here are the features in AUnit which are not available in ArduinoUnit 2.2:

  • Configurable timeout parameter to prevent testing() test cases from running forever:
    • TestRunner::setTimeout(seconds)
    • Test::expire()
    • assertTestExpire()
    • assertTestNotExpire()
    • checkTestExpire()
    • checkTestNotExpire()
  • Case-insensitive string comparisons:
    • assertStringCaseEqual()
    • assertStringCaseNotEqual()
  • Approximate comparisons:
    • assertNear()
    • asssertNotNear()
  • Supports 64-bit integer
    • assertXxx() support both long long and unsigned long long
  • test() and testing() macros support both 1 and 2 arguments
    • test(testName) and test(suiteName, testName)
    • testing(testName) and testing(suiteName, testName)
  • Test fixtures using the "F" variations of existing macros:
    • testF()
    • testingF()
    • assertTestXxxF()
    • checkTestXxxF()
    • externTestF()
    • externTestingF()
  • Unconditional termination:
    • passTestNow()
    • failTestNow()
    • skipTestNow()
    • expireTestNow()
  • teardown() method which mirrors the setup() method:
    • teardown()
  • Test filters support 2-arguments, matching testF() and testingF():
    • TestRunner::include(testClass, name)
    • TestRunner::exclude(testClass, name)
  • No dynamic allocation of heap memory:
    • The library does not create a String object.
    • It reads from a String if the calling code provides it.
  • Terse and verbose modes:
    • #include <AUnit.h> - terse messages use less flash memory
    • #include <AUnitVerbose.h> - verbose messages use more flash memory
  • Tested on the following Arduino platforms:
    • AVR (8-bit)
    • Teensy ARM (32-bit)
    • ESP8266 (32-bit)
    • ESP32 (32-bit)

Every feature of AUnit is unit tested using AUnit itself.

Installation

The latest stable release is available in the Arduino IDE Library Manager. Search for "unit test" or "AUnit", select "AUnit", then click the "Install" button.

The development version can be installed by cloning the GitHub repository, checking out the develop branch, then manually copying over the contents to the ./libraries directory used by the Arduino IDE. (The result is a directory named ./libraries/AUnit.) See the Preferences menu for the location of the Arduino sketch directory. The master branch contains the stable release.

Using either installation method, you may need to restart the Arduino IDE to pick up the new library.

Source Code

The source files are organized as follows:

  • src/AUnit.h - main header file
  • src/AUnitVerbose.h - verbose version of main header file
  • src/aunit/ - all implementation files
  • tests/ - unit tests written using AUnit itself
  • examples/ - example sketches

Docs

The docs/ directory contains the Doxygen docs published on GitHub Pages.

Examples

The examples/ directory has a number of examples:

  • advanced - how to subclass Test and TestOnce manually
  • basic - using the test() macro
  • continuous - using the testing() macro
  • filter - how to filter tests using TestRunner::include() and TestRunner::exclude()
  • fixture - how to use the testF() macro with test fixtures
  • meta_asserts - how to use assertTestXxx() and checkTestXxx()

In the tests/ directory:

  • AUnitTest - the unit test for core AUnit functions,
  • AUnitMetaTest - the unit test for meta assertions and extern*() macros
  • FilterTest - manual tests for include() and exclude() filters
  • SetupAndTeardownTest - tests to verify that setup() and teardown() are called properly by the finite state machine

Perhaps the best way to see AUnit in action through real life examples. I currently have 3 Arduino project using AUnit extensively (look under the tests/ directory in each project).

  • AceButton
    • Originally created using ArduinoUnit 2.2, and I have kept those tests backwards compatible. They do not use the new features of AUnit.
  • AceRoutine
    • Demonstrates the full power of AUnit better.
  • AceSegment
    • Demonstrates the full power of AUnit better.

Usage

In this section, information about differences between AUnit and ArduinoUnit will appear in a note marked by ArduinoUnit Compatibility.

Header and Namespace

To prevent name clashes with other libraries and code, all classes in the AUnit library are defined in the aunit namespace. The user will mostly interact with the TestRunner class. It can be referenced with an explicit namespace qualifier (i.e. aunit::TestRunner), or we can use a using directive like this:

#include <AUnit.h>
using aunit::TestRunner;

or we can import the entire aunit namespace:

#include <AUnit.h>
using namespace aunit;

Similar to ArduinoUnit, many of the "functions" in this framework (e.g. test(), testing(), assertXxx()) are defined as #define macros which live in the global namespace, so it is usually not necessary to import the entire aunit namespace.

Verbose Mode

By default, AUnit generates terse assertion messages by leaving out the string arguments of the various assertXxx() macros. If you would like to get the same verbose output as ArduinoUnit, use the following header instead:

#include <AUnitVerbose.h>

The flash memory consumption on an 8-bit AVR may go up by 20-25% for medium to large tests. On Teensy ARM, ESP8266 or ESP32, the increased memory size probably does not matter too much because these microcontrollers have far more flash and static memory.

Defining the Tests

The usage of AUnit is basically identical to ArduinoUnit. The following macros are used to create a test:

  • test(name) {...} - creates a subclass of TestOnce
  • testing(name) {...} - creates a subclass of TestAgain
  • test(suiteName, name) {...} - creates a subclass of TestOnce
  • testing(suiteName, name) {...} - creates a subclass of TestAgain
  • testF(classname, name) {...} - creates a subclass of classname
  • testingF(classname, name) {...} - creates a subclass of classname

The code in { } following these macros becomes the body of a method in a subclass derived from the base class indicated above. The test() and testF() macros place the code body into the TestOnce::once() method. The testing() and testingF() macros place the code body into the TestAgain::again() method.

The test() and testing() macros support 1 or 2 arguments. The one-argument version is inherited from ArduinoUnit. The two-argument version is analogous to the TEST() macro in GoogleTest, where the suiteName can be used to organize multiple tests into a collection of similar tests. The grouping is purely in the naming scheme of the generated code, there is no functional relationship between these tests.

During static initialization, the constructor of the object adds itself to an internal list. The root of that list is given by Test::getRoot(). The TestRunner::run() method traverses the linked list, executing each test case until it passes, fails or is skipped.

Here is a rough outline of an AUnit unit test sketch:

#line 2 AUnitTest.ino

#include <AUnit.h>
using namespace aunit;

test(example) {
  ...
  assertXxx(...)
  ...
}

test(ExampleTest, example) {
  ...
}

testing(looping) {
  ...code...
  if (...) {
    pass();
  } else if (...) {
    failTestNow();
  } else {
    skipTestNow();
  }
}

testing(LoopingTest, looping) {
  ...
}

class CustomTestOnce: public TestOnce {
  protected:
    // optional
    void setup() override {
      TestOnce::setup();
      ...setup code...
    }

    // optional
    void teardown() override {
      ...teardown code...
      TestOnce::teardown();
    }

    void assertBigStuff() {
      ...higher level assertions...
    }
};

testF(CustomTestOnce, example_test) {
  ...
  assertBigStuff();
  ...
}

class CustomTestAgain: public TestAgain {
  protected:
    // optional
    void setup() override {
      TestAgain::setup();
      ...setup code...
    }

    // optional
    void teardown() override {
      ...teardown code...
      TestOnce::teardown();
    }

    void assertBigStuff() {
      ...various assertions...
    }
};

testingF(CustomTestAgain, example_test) {
  ...
  assertBigStuff();
  ...
}

void setup() {
  Serial.begin(115200);
  while (! Serial); // Wait until Serial is ready - Leonardo/Micro

  TestRunner::exclude("*");
  TestRunner::include("looping*");
  TestRunner::include("CustomTestAgain", "example*");
}

void loop() {
  TestRunner::run();
}

ArduinoUnit Compatibility: The basic structure of the unit test is identical to ArduinoUnit. AUnit adds the testF() and testingF() macros, and the two-argument versions of test() and testing() which are not available in ArduinoUnit. The Test class in ArduinoUnit has been replaced with the TestAgain class in AUnit.

Generated Class and Instance Names

The arguments to the various test*() macros are used to generate the name for the subclasses of TestOnce or TestAgain, and generate the names of the instances of those classes. For reference, here are the rules:

  • test(name)
    • class: "test_" + name
    • instance: "test_" + name + "_instance"
  • testing(name)
    • class: "test_" + name
    • instance: "test_" + name + "_instance"
  • test(suiteName, name)
    • class: suiteName + "_" + name
    • instance: suiteName + "_" + name + "_instance"
  • testing(suiteName, name)
    • class: suiteName + "_" + name
    • instance: suiteName + "_" + name + "_instance"
  • testF(className, name)
    • class: className + "_" + name
    • instance: className + "_" + name + "_instance"
  • testingF(className, name)
    • class: className + "_" + name
    • instance: className + "_" + name + "_instance"

The instance name is available within the test code using the Test::getName() method.

Binary Assertions

Inside the test() and testing() macros, the following assertions are available. These are essentially identical to ArduinoUnit:

  • assertEqual(a, b)
  • assertNotEqual(a, b)
  • assertLess(a, b)
  • assertMore(a, b)
  • assertLessOrEqual(a, b)
  • assertMoreOrEqual(a, b)

Supported Parameter Types

The 6 core assert macros (assertEqual, assertNotEqual, assertLess, assertMore, assertLessOrEqual, assertMoreOrEqual) support the following 18 combinations for their parameter types:

  • (bool, bool)
  • (char, char)
  • (int, int)
  • (unsigned int, unsigned int)
  • (long, long)
  • (unsigned long, unsigned long)
  • (long long, long long)
  • (unsigned long long, unsigned long long)
  • (double, double)
  • (const char *, const char *)
  • (const char *, const String&)
  • (const char *, const __FlashStringHelper*)
  • (const String&, const char*)
  • (const String&, const String&)
  • (const String&, const __FlashStringHelper*)
  • (const __FlashStringHelper*, const char*)
  • (const __FlashStringHelper*, const String&)
  • (const __FlashStringHelper*, const __FlashStringHelper*)

As you can see, all 9 combinations of the 3 string types (char*, String, and __FlashStringHelper*) are supported.

These macros perform deep comparisons for string types instead of just comparing their pointer values. This is different than the ASSERT_EQ() and ASSERT_NE() macros in Google Test which perform only pointer comparisons. In other words, assertEqual() with string types is equivalent to ASSERT_STREQ() in Google Test.

Also for string types, these macros support nullptr (unlike the underlying strcmp() function from the C-library). The nullptr string is defined to be "smaller" than any non-null string, including the empty string. Two nullptr strings are considered to be equal however.

Additionally, the usual C++ implicit type conversion and function overloading matching algorithms apply to support additional argument types. For example, the following type conversions will occur:

  • signed char -> int
  • unsigned char -> int
  • short -> int
  • unsigned short -> int or unsigned int (depending on sizeof(int))
  • char* -> const char*.
  • char[N] -> const char*
  • float -> double

Note that char, signed char, and unsigned char are 3 distinct types in C++, so a (char, char) will match exactly to one of the assertXxx() methods.

ArduinoUnit Compatibility: The names of the macros are identical. However, the type inference logic of two (a, b) arguments in the assertXxx(a, b) is slightly different. ArduinoUnit allows the two parameters to be slightly different types, at the expense of a compiler warning. In AUnit, the warning becomes a compiler error. See the "Parameters Must Match Types" section below.

Parameters Must Match Types

In ArduinoUnit, the assertXxx() macros could be slightly different types, for example:

unsigned int uintValue = 5;
assertEqual(5, uintValue);

If the compiler warnings are enabled in the Preferences box of the IDE, a warning from the compiler is printed:

../ArduinoUnit/src/ArduinoUnitUtility/Compare.h:17:28: warning:
    comparison between signed and unsigned integer expressions [-Wsign-compare]
    return (!(a<b)) && (!(b<a));

In AUnit, the above code produces a compiler error (not a warning) like this:

.../AUnit/src/aunit/Assertion.h:29:66: error: call of overloaded
    'assertion(const char [14], int, int, const char[3], <unresolved overloaded
    function type>, unsigned int&)' is ambiguous
    if (!aunit::assertion(__FILE__,__LINE__,(arg1),opName,op,(arg2)))\
...

The compiler cannot find an appropriate overloaded version of assertEqual().

The solution is to make the parameters the same type:

assertEqual(5U, uintValue);

On the AVR platform, both a (short) and (int) are 16-bit types, so the following will produce a compiler error:

unsigned short ushortValue = 5;
assertEqual(5U, ushortValue);

But on Teensy-ARM, ESP8266, and ESP32, a 16-bit (short) can be promoted to a 32-bit (int) without loss of precision, so the above will compile just fine. For portability, the following should be used on all platforms:

unsigned short ushortValue = 5;
assertEqual((unsigned short) 5, ushortValue);

The integer type promotion rules and function overload matching rules can be difficult to remember (and sometimes difficult to understand). The best way to avoid these compiler errors is to make sure that the assertion parameter types are identical, potentially using explicit casting.

Case Insensitive String Comparisons

Two macros provide case-insensitive string comparisons (analogous to ASSERT_STRCASEEQ() and ASSERT_STRCASENE() in Google Test):

  • assertStringCaseEqual(a, b)
  • assertStringCaseNotEqual(a, b)

The supported types for (a, b) are all 9 combinations of Arduino string types:

  • (const char *, const char *)
  • (const char *, const String&)
  • (const char *, const __FlashStringHelper*)
  • (const String&, const char*)
  • (const String&, const String&)
  • (const String&, const __FlashStringHelper*)
  • (const __FlashStringHelper*, const char*)
  • (const __FlashStringHelper*, const String&)
  • (const __FlashStringHelper*, const __FlashStringHelper*)

ArduinoUnit Compatibility: Not available in ArduinoUnit.

Approximate Comparisons

Floating point values are difficult to compare because of internal rounding errors. Google Test provides two types of macros to handle floating points:

  • ASSERT_FLOAT_EQ(a, b), ASSERT_DOUBLE_EQ(a, b) - determine if the floating point numbers are within 4 Units in the Last Place (ULPs)
  • ASSERT_NEAR(a, b, error) - determine if the absolute distance between a and b is within the given error

Since floating point operations are relatively rare in Arduino programming, AUnit offers only the equilvalent of ASSERT_NEAR() function:

  • assertNear(a, b, error)
  • assertNotNear(a, b, error)

Upon failure, the error messages will look something like:

Assertion failed: |(1.00) - (1.10)| > (0.20), file AUnitTest.ino, line 517.
Assertion failed: |(4.00) - (1.10)| <= (0.20), file AUnitTest.ino, line 527.

Unlike Google Test where ASSERT_NEAR() supports only the double type, both assertNear() and assertNotNear() support integral types as well. The full list of supported types is:

  • int
  • unsigned int
  • long
  • unsigned long
  • double

Other primitive types (e.g. char or float) will be automatically converted to one of these supported types by the compiler. (64-bit integer types long long and unsigned long long are not supported here.)

Note that the abs() of 2 values of a signed integer type can be larger than the maximum value that can be represented by the given signed type. Since signed integer overflow is an undefined behavior in C and C++11, I cannot predict what the compiler will do in that case. Unsigned types should not have this problem because the distance between two values of an unsigned type should always fit inside the given unsigned type. Technically, a similar problem exists for the floating point types (which are naturally signed), but it is unlikely that you are dealing with floating point values so close to the maximum values.

Boolean Assertions

The following boolean asserts are also available:

  • assertTrue(condition)
  • assertFalse(condition)

ArduinoUnit Compatibility: These are identical to ArduinoUnit.

Test Fixtures

When the unit tests become more complex, using test fixtures will allow you to place common data objects and methods into a class that can be shared among multiple test cases. This concept matches very closely to the the test fixtures in Google Test.

To create a test fixture:

  1. Derives a new class from either TestOnce (if you want to run the test just once), or TestAgain (if you want to run the test repeatedly).
  2. Add any data objects inside the class.
  3. Optionally add a virtual void setup() {...} method to perform any common initialization code. Be sure to call the parent's setup() method in the first line to chain any setup() methods defined by the parents. There may be multiple parent classes.
  4. Optionally add a virtual void teardown() {...} method to perform any common clean up code. Be sure to call the parent's teardown() method in the last line to chain any teardown() methods defined by the parents. There may be multiple parent classes.
  5. Add any additional shared methods into this new class.

To define your tests, use the testF() macro like this:

class CustomTestOnce: public TestOnce {
  protected:
    // optional
    void setup() override {
      TestOnce::setup();
      ...setup code...
    }

    // optional
    void teardown() override {
      ...teardown code...
      TestOnce::teardown();
    }

    void assertCustomStuff() {
      ...common code...
    }

    int sharedValue;
};

testF(CustomTestOnce, calculate) {
  ...test code here...
}

No constructor for CustomTestOnce needs to be defined.

Underneath the covers, the testF() macro creates a subclass named CustomTestOnce_calculate which inherits from TestOnce class. The test code becomes the body of the CustomTestOnce_calculate::once() method. The name of this test has the class name prepended, so it is CustomTestOnce_calculate, which prevents name collision with other testF() tests with the same name using a different test fixture class.

To define a continuous test, use the testingF() macro like this:

class CustomTestAgain: public TestAgain {
  protected:
    // optional
    void setup() override {
      TestAgain::setup();
      ...setup code...
    }

    // optional
    void teardown() override {
      ...teardown code...
      TestAgain::teardown();
    }

    void assertCustomStuff() {
      ...common code...
    }

    int sharedValue;
};

testingF(CustomTestAgain, calculate) {
  ...test code here...
}

Similarly, the testingF() macro creates a subclass named CustomTestAgain_calculate, and the test code becomes the body of the CustomTestAgain_calculate::again() method.

See examples/fixtures/fixtures.ino to see a working example of the testF() macro.

ArduinoUnit Compatibility: The testF() and testingF() macros, and the teardown() virtual method are available only in AUnit (and Google Test), not ArduinoUnit.

Early Return and Delayed Assertions

AUnit (like ArduinoUnit and Google Test) does not use C++ exceptions. Instead, the various assertXxx() macros perform an early return if the condition evaluates to false. That means that the assertions can only bail out of the current method, not the calling method. If you are using test fixtures, and create a shared custom assert function, e.g. the assertCustomStuff() method above, any assertXxx() statements in shared method will bail out of that method only. The statement after the assertCustomStuff() will continue to execute.

In other words, in the following example, if the assertCustomStuff() fails, then doStuff() inside testF() will execute:

class CustomTestOnce: public TestOnce {
  protected:
    // optional
    void setup() override {
      TestOnce::setup();
      ...setup code...
    }

    // optional
    void teardown() override {
      ...teardown code...
      TestOnce::teardown();
    }

    void assertCustomStuff() {
      assertEqual(sharedValue, 3);

      // This will not execute if the assertEqual() failed.
      assertLess(...);
    }

    int sharedValue;
};

testF(CustomTestOnce, calculate) {
  assertCustomStuff();

  // This will execute even if assertCustomStuff() failed.
  doStuff();

  // This will immediately exit this method if assertCustomStuff() failed.
  assertTrue(true);

  // This will NOT execute if assertCustomStuff() failed.
  doMoreStuff();
}

AUnit tries to mitigate this problem by having every assertXxx() macro perform a check to see if a previous assert statement raise an error condition for the test. If so, then the assert macro immediately exits. In the code above, doMoreStuff() will not execute, because the assertNotEqual() will immidately exit upon detecting the failure of assertCustomStuff().

Google Test has a ASSERT_NO_FATAL_FAILURE( statement) macro that can guard against this possibility. AUnit does not have that macro, but we get the equivalent effect by doing a assertTrue(true) shown above.

Meta Assertions

The following methods from ArduinoUnit have also been implemented:

  • checkTestDone(name)
  • checkTestNotDone(name)
  • checkTestPass(name)
  • checkTestNotPass(name)
  • checkTestFail(name)
  • checkTestNotFail(name)
  • checkTestSkip(name)
  • checkTestNotSkip(name)
  • checkTestExpire(name) [*]
  • checkTestNotExpire(name) [*]
  • assertTestDone(name)
  • assertTestNotDone(name)
  • assertTestPass(name)
  • assertTestNotPass(name)
  • assertTestFail(name)
  • assertTestNotFail(name)
  • assertTestSkip(name)
  • assertTestNotSkip(name)
  • assertTestExpire(name) [*]
  • assertTestNotExpire(name) [*]

The checkTestXxx() methods check the status of the test named name and returns a bool. The execution continues even if false.

The assertTestXxx() methods stops the unit test if the status check returns false, and prints assertion messages that look like this:

Assertion passed: Test slow_pass is done, file AUnitTest.ino, line 366.
Assertion passed: Test slow_pass is not failed, file AUnitTest.ino, line 372.
Assertion passed: Test slow_skip is skipped, file AUnitTest.ino, line 448.
Assertion passed: Test slow_skip is not timed out, file AUnitTest.ino, line 451.

(The human readable version of being expired will always be timed out or not timed out on the Serial output.)

The following macros define extern references to test case objects which live in other .cpp files. These are required for the above meta assertions if the test cases are defined in another file:

  • externTest()
  • externTesting()
  • externTestF()
  • externTestingF()

ArduinoUnit Compatibility: The methods marked by [*] are only available in AUnit. Also, the assertion messages are different. ArduinoUnit reuses the format used by the assertXxx() macros, so prints something like the following:

Assertion passed: (test_slow_skip_instance.state=2) >= (Test::DONE_SKIP=2), file
AUnitTest.ino, line 439.

AUnit has a separate message handler to print a customized message for the assertTestXxx() meta assertion macros.

Unconditional Termination

The following macros can be used inside the body of test() or testing() macro to terminate a test unconditionally. Each macro prints a short message, and returns immediately from the test, much like an assertXxx() macro that fails.

  • passTestNow() [*]
  • failTestNow() [*]
  • skipTestNow() [*]
  • expireTestNow() [*]

The messages look like:

Status passed, file AUnitTest.ino, line 360.
Status failed, file AUnitTest.ino, line 378.
Status skipped, file AUnitTest.ino, line 380.
Status timed out, file AUnitTest.ino, line 391.

The following methods on the Test class also set the status of the test, but these methods do not print any messages (which makes debugging difficult) and they do not terminate the test immediately.

  • pass() - test passed
  • fail() - test failed
  • skip() - test skipped
  • expire() - test timed out [*]

In most cases, the failTestNow(), skipTestNow() and expireTestNow() macros are more useful than the equivalent methods in the Test class. However, in a testing() loop test, the pass() method is probably better than the passTestNow() macro because we usually don't want to see an error message from a passing test.

ArduinoUnit Compatibility: The method(s) marked by [*] are only available in AUnit.

Overridable Methods

The following methods are defined at the Test base class level:

  • setup()
  • teardown()

The TestOnce class defines:

  • once()

The TestAgain class defines:

  • again()

ArduinoUnit Compatibility: These are functionally the same as ArduinoUnit except with different class names. Instead of Test use TestAgain. Instead of Test::loop use TestAgain::again(). ArduinoUnit does not support a teardown() method.

Running the Tests

We run the test cases in the global loop() method by calling TestRunner::run(). The tests are sorted according to the name of the test given in the argument in the test() or testing() macro.

Each call to the run() method causes one test case to run and be resolved. The next call to run() executes the next test case. This design allows the loop() method to perform a small amount of work and return periodically to allow the system to perform some actions. On some systems, such as the ESP8266, an error is generated if loop() takes too much CPU time.

...
void loop() {
  TestRunner::run();
}

ArduinoUnit Compatibility: This is equivalent to called Test::run() in ArduinoUnit. AUnit sorts the tests in the same way as ArduinoUnit. In ArduinoUnit, each call to Test::run() will process the entire list of currently active test cases. In AUnit, each call to TestRunner::run() performs only a single test case, then returns.

Filtering Test Cases

We can exclude() or include() test cases using a pattern match:

  • TestRunner::exclude(pattern)
  • TestRunner::exclude(testClass, pattern)
  • TestRunner::include(pattern)
  • TestRunner::include(testClass, pattern)

These methods are called from the global setup() method:

void setup() {
  TestRunner::exclude("*");
  TestRunner::include("looping*");
  TestRunner::exclude("CustomTestAgain", "*");
  TestRunner::include("CustomTestAgain", "test*");
  ...
}

Excluded tests bypass their setup() and teardown() methods and terminate immidiately. For the purposes of reporting, however, excluded tests are counted as "skipped".

The 2-argument versions of include() and exclude() correspond to the 2 arguments of testF() and testingF().

ArduinoUnit Compatibility: The equivalent versions in ArduinoUnit are Test::exclude() and Test::include() The matching algorithm in AUnit is not as powerful as the one in ArduinoUnit. AUnit supports only a single wildcard character * and that character can appear only at the end if it is present. For example, the following are accepted:

  • TestRunner::exclude("*");
  • TestRunner::include("f*");
  • TestRunner::exclude("flash_*");
  • TestRunner::include("looping*");
  • TestRunner::include("CustomTestOnce", "flashTest*");

AUnit provides 2-argument versions of include() and exclude()

Output Printer

The default output printer is the Serial instance. This can be changed using the TestRunner::setPrinter() method:

#include <AUnit.h>
using aunit::TestRunner;
...

void setup() {
  Serial1.begin(...);

  TestRunner::setPrinter(&Serial1);
  ...
}

void loop() {
  TestRunner::run();
}

ArduinoUnit Compatibility: This is the equivalent of the Test::out static member variable in ArduinoUnit.

Controlling the Verbosity

The default verbosity of the test results can be controlled using the TestRunner::setVerbosity() method:

#include <AUnit.h>
using aunit::TestRunner;
using aunit::Verbosity;
...
void setup() {
  ...
  TestRunner::setVerbosity(Verbosity::kAll);
  ...
}

Every test is assigned this default verbosity just before its Test::setup() is called. A unit test can choose to modify the verbosity calling one of the following methods:

  • void enableVerbosity(uint8_t verbosity);
    • enables the given verbosity, retaining all the others
  • void disableVerbosity(uint8_t verbosity);
    • disables the given verbosity, retaining all the others

at the beginning of the test definition, like this:

test(enable_assertion_passed_messages) {
  enableVerbosity(Verbosity::kAssertionPassed);
  ...
}

The values of verbosity are defined by the static constants of the Verbosity utility class:

  • Verbosity::kAssertionPassed
  • Verbosity::kAssertionFailed
  • Verbosity::kTestPassed
  • Verbosity::kTestFailed
  • Verbosity::kTestSkipped
  • Verbosity::kTestExpired
  • Verbosity::kTestRunSummary
  • Verbosity::kAssertionAll - enables all assert messages
  • Verbosity::kTestAll
    • same as (kTestPassed | kTestFailed | kTestSkipped | kTestExpired)
  • Verbosity::kDefault
    • same as (kAssertionFailed | kTestAll | kTestRunSummary )
  • Verbosity::kAll - enables all messages
  • Verbosity::kNone - disables all messages

ArduinoUnit Compatibility: The following ArduinoUnit variables do not exist:

  • Test::min_verbosity
  • Test::max_verbosity

The bit field constants have slightly different names:

  • TEST_VERBOSITY_TESTS_SUMMARY -> Verbosity::kTestRunSummary
  • TEST_VERBOSITY_TESTS_FAILED -> Verbosity::kTestFailed
  • TEST_VERBOSITY_TESTS_PASSED -> Verbosity::kTestPassed
  • TEST_VERBOSITY_TESTS_SKIPPED -> Verbosity::kTestPassed
  • TEST_VERBOSITY_TESTS_ALL -> Verbosity::kTestAll
  • TEST_VERBOSITY_ASSERTIONS_FAILED -> Verbosity::kAssertionFailed
  • TEST_VERBOSITY_ASSERTIONS_PASSED -> Verbosity::kAssertionPassed
  • TEST_VERBOSITY_ASSERTIONS_ALL -> Verbosity::kAssertionAll
  • TEST_VERBOSITY_ALL -> Verbosity::kAll
  • TEST_VERBOSITY_NONE -> Verbosity::kNone
  • {no equivalent} <- Verbosity::kDefault
  • {no equivalent} <- Verbosity::kTestExpired

Line Number Mismatch

AUnit suffers from the same compiler/preprocessor bug as ArduinoUnit that causes the built-in __LINE__ macro to be off by one. The solution is to add:

#line 2 {file.ino}

as the first line of a unit test sketch.

ArduinoUnit Compatibility: This problem is identical to ArduinoUnit.

Assertion Message

The various assertXxx() macros in AUnit print a message upon pass or fail. For example, if the assertion was:

int expected = 3;
int counter = 4;
assertEquals(expected, counter);

The error message (if enabled, which is the default) is:

Assertion failed: (3) == (4), file AUnitTest.ino, line 134.

Asserts with bool values produce customized messages, printing "true" or "false" instead of using the Print class default conversion to int:

assertEquals(true, false);

Assertion failed: (true) == (false), file AUnitTest.ino, line 134.

Similarly, the assertTrue() and assertFalse() macros provide more customized messages:

bool ok = false;
assertTrue(ok);

Assertion failed: (false) is true, file AUnitTest.ino, line 134.

and

bool ok = true;
assertFalse(ok);

Assertion failed: (true) is false, file AUnitTest.ino, line 134.

ArduinoUnit Compatibility: ArduinoUnit captures the arguments of the assertEqual() macro and prints:

Assertion failed: (expected=3) == (counter=4), file AUnitTest.ino, line 134.

Each capture of the parameter string consumes flash memory space. If the unit test has numerous assertXxx() statements, the flash memory cost is expensive. AUnit omits the parameters to reduce flash memory space by about 33%.

The messages for asserts with bool values are customized for better clarity (partially to compensate for the lack of capture of the string of the actual arguments, and are different from ArduinoUnit.

Verbose Mode

If you use the verbose header:

#include <AUnitVerbose.h>

the assertion message will contain the string fragments of the arguments passed into the assertXxx() macros, like this:

Assertion failed: (expected=3) == (counter=4), file AUnitTest.ino, line 134.
Assertion failed: (ok=false) is true, file AUnitTest.ino, line 134.

ArduinoUnit Compatibility: The verbose mode produces the same messages as ArduinoUnit, at the cost of increased flash memory usage.

Test Summary

As each test case finishes, the TestRunner prints out the summary of the test case like this:

Test bad failed.
Test looping_pass passed.
Test looping_skip skipped.
Test looping_until timed out.

ArduinoUnit Compatibility: These are identifcal to ArduinoUnit, except that the "timed out" status is new to AUnit. See Test Timeout section below.

Test Runner Summary

At the end of the test run, the TestRunner prints out the summary of all test cases, like this:

TestRunner duration: 0.05 seconds.
TestRunner summary: 12 passed, 0 failed, 2 skipped, 1 timed out, out of 15 test(s).

ArduinoUnit Compatibility: The message format is slightly different than ArduinoUnit. I changed "Test summary" to "TestRunner summary" because the former looks identical to the message that could have been printed by a test(summary) test case. AUnit also adds information about tests which timed out. See below.

Test Timeout

ArduinoUnit Compatibility: Only available in AUnit.

From my experience, it seems incredibly easy to write a testing() test case which accidentally runs forever because the code forgets to call an explicit pass(), fail() or skip().

The TestRunner in AUnit applies a time out value to all the test cases that it runs. The default time out is 10 seconds. Currently, the time out value is global to all test cases, individual test time out values cannot be set independently. If a test does not finish before that time, then the test is marked as timed out (internally implemented by the Test::expire() method) and a message is printed like this:

Test looping_until timed out.

The time out value can be changed by calling the static TestRunner::setTimeout() method. Here is an example that sets the timeout to 30 seconds instead:

void setup() {
  ...
  TestRunner::setTimeout(30);
  ...
}

A timeout value of 0 means an infinite timeout, which means that the testing() test case may run forever. To conserve static memory, the value of the timeout is stored as a single byte uint8_t, so the maximum timeout is 255 seconds or 4m15s. (It could be argued that a test taking longer than this is not really a unit test but an integration test, and should probably use a different framework, but let me know if you truly need a timeout of greater than 4m15s).

ArduinoUnit Compatibility: Only available in AUnit.

GoogleTest Adapter

It may be possible to run simple unit tests written using Google Test API on an Arduino platform by using the aunit/contrib/gtest.h adapter. This adapter layer provides a number of macros Google Test macros which map to their equivalent macros in AUnit:

  • ASSERT_EQ(e, a) - assertEqual()
  • ASSERT_NE(e, a) - assertNotEqual()
  • ASSERT_LT(e, a) - assertLess()
  • ASSERT_GT(e, a) - assertMore()
  • ASSERT_LE(e, a) - assertLessOrEqual()
  • ASSERT_GE(e, a) - assertMoreOrEqual()
  • ASSERT_STREQ(e, a) - assertEqual()
  • ASSERT_STRNE(e, a) - assertNotEqual()
  • ASSERT_STRCASEEQ(e, a) - assertStringCaseEqual()
  • ASSERT_STRCASENE(e, a) - assertStringCaseNotEqual()
  • ASSERT_TRUE(x) - assertTrue()
  • ASSERT_FALSE(x) - assertFalse()
  • ASSERT_NEAR(e, a, error) - assertNear()

To use the gtest.h adapter, include the following headers:

#include <AUnit.h>
#include <aunit/contrib/gtest.h>

or

#include <AUnitVerbose.h>
#include <aunit/contrib/gtest.h>

Commandline Tools and Continuous Integration

AUniter

The command line tools have been moved into the AUniter project. The auniter.sh script can compile, upload and validate multiple AUnit tests on multiple Arduino boards. The script can monitor the serial port and determine if the unit test passed or failed, and it will print out a summary of all unit tests at the end. Full details are given in the AUniter project, but here are some quick examples copied from the AUniter/README.md file:

  • $ auniter envs
    • list the environments configured in the auniter.ini config file
  • $ auniter ports
    • list the available serial ports and devices
  • $ auniter verify nano Blink.ino
    • verify (compile) Blink.ino using the env:nano environment
  • $ auniter verify nano,esp8266,esp32 Blink.ino
    • verify Blink.ino on 3 target environments (env:nano, env:esp8266, env:esp32)
  • $ auniter upload nano:/dev/ttyUSB0 Blink.ino
    • upload Blink.ino to the env:nano target environment connected to /dev/ttyUSB0
  • $ auniter test nano:USB0 BlinkTest.ino
    • compile and upload BlinkTest.ino using the env:nano environment, upload it to the board at /dev/ttyUSB0, then validate the output of the AUnit unit test
  • $ auniter test nano:USB0,esp8266:USB1,esp32:USB2 BlinkTest/ ClockTest/
    • upload and verify the 2 unit tests (BlinkTest/BlinkTest.ino, ClockTest/ClockTest.ino) on 3 target environments (env:nano, env:esp8266, env:esp32) located at the 3 respective ports (/dev/ttyUSB0, /dev/ttyUSB1, /dev/ttyUSB2)
  • $ auniter upmon nano:USB0 Blink.ino
    • upload the Blink.ino sketch and monitor the serial port using a user-configurable terminal program (e.g. picocom) on /dev/ttyUSB0

Continuous Integration

The AUniter tools have been integrated into the Jenkins continuous integration service. See details in Continuous Integration with Jenkins.

Tips

Collection of useful tidbits.

Debugging Assertions in Fixtures

When using test fixtures with the testF() and testingF() macros, it's often useful to create helper assertions, such as the assertCustomStuff() below. Debugging such assertion statements can be tricky. I've found that turning on messages for successful assertions (with a enableVerbosity(Verbosity::kAssertionPassed)) statement can be very helpful:

class CustomTestOnce: public TestOnce {
  protected:
    // optional
    void setup() override {
      TestOnce::setup();
      ...setup code...
    }

    // optional
    void teardown() override {
      ...teardown code...
      TestOnce::teardown();
    }

    void assertCustomStuff() {
      assertEqual(...);
      ...
      for (...) {
        ...
        assertEqual(...);
        ...
      }
    }

    int sharedValue;
};

testF(CustomTestOnce, calculate) {
  enableVerbosity(Verbosity::kAssertionPassed);

  ...test code here...
  assertCustomStuff();
}

Class Name Differences

To support test fixtures in a more natural way, the class hierarchy in AUnit is slightly different than ArduinoUnit. In ArduinoUnit we have a two level hierarchy:

  Test ::loop()
    ^
    |
 TestOnce ::once()

In AUnit, the functionality that supports the testing() macro has been migrated to a separate class called TestAgain, like this:

       Test ::loop()
         ^
         |
      Assertion
         ^
         |
     MetaAssertion
        ^  ^
       /    \
      /      \
TestAgain  TestOnce
::again()  ::once()

Normally, deep inheritance hierarchies like this should be avoided. However, placing the Assertion and MetaAssertion classes inside the Test hierarchy allowed those assertion statements to have access to the internal states of the Test instance. This made certain features (like the early return upon delayed failure) slightly easier to implement. For the most part, the end-users can ignore the existence of the Assertion and MetaAssertion classes and think of this as a simple 2-level inheritance tree.

Comparing Pointers

Currently the assertEqual() and other assertXxx() methods do not support comparing arbitrary pointers (i.e. (void*). This could change if Issue #34 is resolved. In the meantime, a workaround is to cast the pointer to a uintptr_t integer type from #include <stdint.h> and then calling assertEqual() on the integer type.

Testing Private Helper Methods

There is a school of throught which says that unit tests should test only the publically exposed methods of a class or library. I agree mostly with that sentiment, but not rigidly. I think it is sometimes useful to write unit tests for protected or private methods. For example, when creating a chain of small helper methods, which build up to larger publically exposed methods, it is extremely useful to write unit tests for the helper methods in isolation.

Normally those helper methods would be private because they are used only within that class, and we don't want to expose them to the public API. One option is to make them public but add a comment in the function to say that it is exposed only for testing purposes. This does not seem satisfactory because users will tend to ignore such comments if the helper functions are useful.

I think a better way is to keep the helper functions private but make the unit tests a friend class of the target class. The syntax for doing this can be tricky, it took me a number of attempts to get this right, especially if you are also using namespaces for your target class:

//------------------- Target.h -------------

// Auto-generated test class names.
class Test_helper;
class TargetSuite_helper;
class TargetTest_helper;

namespace mylib {

class Target {
  public:
    void publicMethod() {
      ...
      int a = helper();
      ...
    }

  private:
    // Must have the global scope operator '::'
    friend class ::Test_helper;
    friend class ::TargetSuite_helper;
    friend class ::TargetTest_helper;

    static int helper() {...}
};

}

//------------------- TargetTest.ino -------------

#include <AUnit.h>
#include "Target.h"

using namespace aunit;
using namespace mylib;

test(helper) {
  assertEqual(1, Target::helper(...));
}

test(TargetSuite, helper) {
  assertEqual(1, Target::helper(...));
}

class TargetTest: public TestOnce {
  ...
};

testF(TargetTest, helper) {
  assertEqual(1, Target::helper(...));
}

The tricky part is that in Target.h you need a forward declaration of the various auto-generated AUnit test classes, and within the Target class itsef, the friend declaration needs to have a global scope :: specifier before the name of the test class.

Benchmarks

AUnit consumes as much as 65% less flash memory than ArduinoUnit 2.2 on an AVR platform (e.g. Arduino UNO, Nano), and 30% less flash on the Teensy-ARM platform (e.g. Teensy LC ). (ArduinoUnit 2.3 reduces the flash memory by 30% or so, which means that AUnit can still consume significantly less flash memory.)

Here are the resource consumption (flash and static) numbers from AceButtonTest containing 26 test cases using 331 assertXxx() statements, compiled using AUnit and ArduinoUnit 2.2 on 5 different microcontrollers:

Platform (resource)        |     Max | ArduinoUnit |       AUnit |
---------------------------+---------+-------------+-------------|
Arduino Nano (flash)       |   30720 |       54038 |       18928 |
Arduino Nano (static)      |    2048 |        1061 |         917 |
---------------------------+---------+-------------+-------------|
Teensy LC (flash)          |   63488 |       36196 |       26496 |
Teensy LC (static)         |    8192 |        2980 |        2780 |
---------------------------+---------+-------------+-------------|
Teensy 3.2 (flash)         |  262144 |       51236 |       37920 |
Teensy 3.2 (static)        |   65536 |        5328 |        5236 |
---------------------------+---------+-------------+-------------|
ESP8266 - ESP-12E (flash)  | 1044464 |    does not |      268236 |
ESP8266 - ESP-12E (static) |   81920 |     compile |       33128 |
---------------------------+---------+-------------+-------------|
ESP8266 - ESP-01 (flash)   |  499696 |    does not |      268236 |
ESP8266 - ESP-01 (static)  |   47356 |     compile |       33128 |
---------------------------+---------+-------------+-------------|

Not all unit test sketches will experience a savings of 65% of flash memory with AUnit, but a savings of 30-50% seems to be common.

Changelog

See CHANGELOG.md.

System Requirements

This library was developed and tested using:

I used MacOS 10.13.3 and Ubuntu 17.10 for most of my development.

The library is tested on the following hardware before each release:

  • Arduino Nano clone (16 MHz ATmega328P)
  • SparkFun Pro Micro clone (16 MHz ATmega32U4)
  • Teensy 3.2 (72 MHz ARM Cortex-M4)
  • NodeMCU 1.0 clone (ESP-12E module, 80 MHz ESP8266)
  • ESP32 dev board (ESP-WROOM-32 module, 240 MHz dual core Tensilica LX6)

I will occasionally test on the following hardware as a sanity check:

  • Arduino UNO R3 clone (16 MHz ATmega328P)
  • Arduino Pro Mini clone (16 MHz ATmega328P)
  • Teensy LC (48 MHz ARM Cortex-M0+)
  • ESP-01 (ESP-01 module, 80 MHz ESP8266)

License

MIT License

Feedback and Support

If you have any questions, comments, bug reports, or feature requests, please file a GitHub ticket or send me an email. I'd love to hear about how this software and its documentation can be improved. Instead of forking the repository to modify or add a feature for your own projects, let me have a chance to incorporate the change into the main repository so that your external dependencies are simpler and so that others can benefit. I can't promise that I will incorporate everything, but I will give your ideas serious consideration.

Authors

  • Created by Brian T. Park ([email protected]).
  • The Google Test adapter (gtest.h) was created by Chris Johnson ([email protected]).
  • The design and syntax of many macros (e.g. test(), assertXxx()) were borrowed from the ArduinoUnit project to allow AUnit to be almost a drop-in replacement. Many thanks to the ArduinoUnit team for creating such an easy-to-use API.

aunit's People

Contributors

bxparks avatar ciband avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.