Coder Social home page Coder Social logo

inventronet's Introduction

inventronet

codecov

inventronet is a package for building and testing neural networks in Python. It provides a simple and intuitive API for creating, training, and evaluating various types of neural network models. It also includes some common loss functions, activation functions, and metrics for neural network problems.

Installation

You can install inventronet using pip:

pip install inventronet

Usage

To use inventronet, you need to import the package and create a neural network object. You can then add layers, loss functions, activation functions, and metrics to the network. You can also specify the learning rate, batch size, and number of epochs for training. Here is an example of creating a simple feed forward neural network for a binary classification problem:

from typing import Tuple

import matplotlib.pyplot as plt
import numpy as np

from inventronet.activations import Sigmoid, ReLU
from inventronet.layers import Dense
from inventronet.losses import BinaryCrossEntropy as BCE
from inventronet.metrics import Accuracy, Precision
from inventronet.models import Sequential
from inventronet.optimizers import StochasticGradientDescent


def plot_history(history):
    fig, axs = plt.subplots(1, len(history), figsize=(12, 4), sharex=True)

    for idx, (label, values) in enumerate(history.items()):
        axs[idx].plot(range(1, len(values) + 1), values)
        axs[idx].set_title(label)
        axs[idx].set_xlabel("Epoch")
        axs[idx].set_ylabel(label)
        axs[idx].grid(True)

    plt.tight_layout()
    plt.show()


epochs = 10000


def glorot_uniform(size: Tuple[int, int]) -> np.ndarray:
    input_dim, output_dim = size
    limit = np.sqrt(6 / (input_dim + output_dim))
    return np.random.uniform(low=-limit, high=limit, size=size)


# Define the input and output data
input_data = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
output_data = np.array([[0], [1], [1], [0]])

# Define the neural network with two dense layers
model = Sequential()
model.add(Dense(input_dim=3, output_dim=4, activation=ReLU(), weight_initializer=glorot_uniform))
model.add(Dense(input_dim=4, output_dim=1, activation=Sigmoid(), weight_initializer=glorot_uniform))

# Define the loss function and the metric
loss = BCE()
optimizer = StochasticGradientDescent(learning_rate=0.1)

# Compile the model with the loss function, optimizer and the metrics
model.compile(loss, optimizer, metrics=[Precision(), Accuracy()])

# Set early stopping parameters
model.set_early_stopping(patience=500, min_delta=1e-4)

# Fit the model on the training data
model.fit(input_data, output_data, epochs)

# Evaluate the model on the test data
loss_value, metric_values = model.evaluate(input_data, output_data)
metric_names = [metric.__class__.__name__ for metric in model.metrics]
metric_str = ', '.join([f"{name}: {value:.4f}" for name, value in zip(metric_names, metric_values)])
print(f"Test Loss: {loss_value:.4f}, Test metrics: {metric_str}")

# Plot the training history
plot_history(model.history)
# Example of validation splitting
from typing import Tuple

import matplotlib.pyplot as plt
import numpy as np

from inventronet.activations import Sigmoid, ReLU
from inventronet.layers import Dense
from inventronet.losses import BinaryCrossEntropy as BCE
from inventronet.metrics import Accuracy, Precision
from inventronet.models import Sequential
from inventronet.optimizers import StochasticGradientDescent


def plot_history(history):
    # Get the keys for training and validation metrics
    train_keys = [key for key in history.keys() if not key.startswith("val_")]
    val_keys = [f"val_{key}" for key in train_keys]

    fig, axs = plt.subplots(1, len(train_keys), figsize=(12, 4), sharex=True)

    for idx, (train_key, val_key) in enumerate(zip(train_keys, val_keys)):
        axs[idx].plot(range(1, len(history[train_key]) + 1), history[train_key], label="Training")
        if val_key in history:
            axs[idx].plot(range(1, len(history[val_key]) + 1), history[val_key], label="Validation")
        axs[idx].set_title(train_key)
        axs[idx].set_xlabel("Epoch")
        axs[idx].set_ylabel(train_key)
        axs[idx].legend()
        axs[idx].grid(True)

    plt.tight_layout()
    plt.show()


epochs = 10000


def glorot_uniform(size: Tuple[int, int]) -> np.ndarray:
    input_dim, output_dim = size
    limit = np.sqrt(6 / (input_dim + output_dim))
    return np.random.uniform(low=-limit, high=limit, size=size)


# Define the input and output data
input_data = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
output_data = np.array([[0], [1], [1], [0]])

# Define the neural network with two dense layers
model = Sequential()
model.add(Dense(input_dim=3, output_dim=4, activation=ReLU(), weight_initializer=glorot_uniform))
model.add(Dense(input_dim=4, output_dim=1, activation=Sigmoid(), weight_initializer=glorot_uniform))

# Define the loss function and the metric
loss = BCE()
optimizer = StochasticGradientDescent(learning_rate=0.1)

# Compile the model with the loss function, optimizer and the metrics
model.compile(loss, optimizer, metrics=[Precision(), Accuracy()])

# Set early stopping parameters
model.set_early_stopping(patience=500, min_delta=1e-4)

# Specify the validation_split parameter (e.g., 0.2 for using 20% of the data for validation)
validation_split = 0.5

# Fit the model on the training data, with validation
model.fit(input_data, output_data, epochs, validation_split=validation_split)

# Evaluate the model on the test data
loss_value, metric_values = model.evaluate(input_data, output_data)
metric_names = [metric.__class__.__name__ for metric in model.metrics]
metric_str = ', '.join([f"{name}: {value:.4f}" for name, value in zip(metric_names, metric_values)])
print(f"Test Loss: {loss_value:.4f}, Test metrics: {metric_str}")

# Plot the training history
plot_history(model.history)

Documentation

You can find the full documentation of inventronet at https://github.com/inventrohyder/inventronet.

License

inventronet is licensed under the MIT License. See the LICENSE file for more details.

inventronet's People

Contributors

inventrohyder avatar

Watchers

James Cloos avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.