Coder Social home page Coder Social logo

infineon / mtb-example-xmc-spi-external-trigger-transmit Goto Github PK

View Code? Open in Web Editor NEW
0.0 11.0 0.0 39 KB

Makefile 53.30% C 46.70%
kit-xmc11-boot-001 kit-xmc12-boot-001 kit-xmc13-boot-001 kit-xmc14-boot-001 kit-xmc43-relax-ecat-v1 kit-xmc45-relax-v1 kit-xmc47-relax-v1 kit-xmc48-relax-ecat-v1 peripherals

mtb-example-xmc-spi-external-trigger-transmit's Introduction

XMC™ MCU: SPI EXTTRG transmit

This code example demonstrates the transfer of three bytes of data using the SPI master triggered by an external event or a timer-based event in XMC™ MCU. The successful completion of transfer is indicated by the toggling of an LED on the board.

Requirements

Supported toolchains (make variable 'TOOLCHAIN')

  • GNU Arm® Embedded Compiler v11.3.1 (GCC_ARM) - Default value of TOOLCHAIN

Supported kits (make variable 'TARGET')

Hardware setup

This example uses the board's default configuration. See the kit user guide to ensure that the board is configured correctly.

Use jumper wires to establish a connection between the master and the slave. The pin assignments for the master and slave devices for the supported kits are listed in Table 1.

Table 1. Pin connections to the SPI slave kit

Development kit MOSI MISO SCLK CS DX2 Ground
KIT_XMC11_BOOT_001 1[0] 2[0] 0[8] 0[9] 0[0] GND
KIT_XMC12_BOOT_001 1[0] 2[0] 0[8] 0[9] 0[10] GND
KIT_XMC13_BOOT_001 1[0] 2[0] 0[8] 0[9] 0[10] GND
KIT_XMC14_BOOT_001 1[0] 2[0] 0[8] 0[9] 0[0] GND
KIT_XMC45_RELAX_V1 0[1] 0[0] 0[10] 0[9] 0[12] GND
KIT_XMC47_RELAX_V1 0[5] 0[4] 0[11] 0[6] 5[9] GND
KIT_XMC43_RELAX_ECAT_V1 0[1] 0[0] 0[10] 0[2] 0[9] GND
KIT_XMC48_RELAX_ECAT_V1 0[5] 0[4] 0[11] 0[6] 5[9] GND

Connect the master's MOSI to the slave's MOSI, MISO to MISO, SCLK to SCLK, and CS to CS.

Software setup

This example requires no additional software or tools.

Using the code example

Create the project

The ModusToolbox™ tools package provides the Project Creator as both a GUI tool and a command line tool.

Use Project Creator GUI
  1. Open the Project Creator GUI tool.

    There are several ways to do this, including launching it from the dashboard or from inside the Eclipse IDE. For more details, see the Project Creator user guide (locally available at {ModusToolbox™ install directory}/tools_{version}/project-creator/docs/project-creator.pdf).

  2. On the Choose Board Support Package (BSP) page, select a kit supported by this code example. See Supported kits.

    Note: To use this code example for a kit not listed here, you may need to update the source files. If the kit does not have the required resources, the application may not work.

  3. On the Select Application page:

    a. Select the Applications(s) Root Path and the Target IDE.

    Note: Depending on how you open the Project Creator tool, these fields may be pre-selected for you.

    b. Select this code example from the list by enabling its check box.

    Note: You can narrow the list of displayed examples by typing in the filter box.

    c. (Optional) Change the suggested New Application Name and New BSP Name.

    d. Click Create to complete the application creation process.

Use Project Creator CLI

The 'project-creator-cli' tool can be used to create applications from a CLI terminal or from within batch files or shell scripts. This tool is available in the {ModusToolbox™ install directory}/tools_{version}/project-creator/ directory.

Use a CLI terminal to invoke the 'project-creator-cli' tool. On Windows, use the command-line 'modus-shell' program provided in the ModusToolbox™ installation instead of a standard Windows command-line application. This shell provides access to all ModusToolbox™ tools. You can access it by typing "modus-shell" in the search box in the Windows menu. In Linux and macOS, you can use any terminal application.

The following example clones the "SPI EXTTRG TRANSMIT" application with the desired name "MySpiExttrgTransmit" configured for the KIT_XMC43_RELAX_ECAT_V1 BSP into the specified working directory, C:/mtb_projects:

project-creator-cli --board-id KIT_XMC43_RELAX_ECAT_V1 --app-id mtb-example-xmc-spi-external-trigger-transmit --user-app-name MySpiExttrgTransmit --target-dir "C:/mtb_projects"

The 'project-creator-cli' tool has the following arguments:

Argument Description Required/optional
--board-id Defined in the field of the BSP manifest Required
--app-id Defined in the field of the CE manifest Required
--target-dir Specify the directory in which the application is to be created if you prefer not to use the default current working directory Optional
--user-app-name Specify the name of the application if you prefer to have a name other than the example's default name Optional

Note: The project-creator-cli tool uses the git clone and make getlibs commands to fetch the repository and import the required libraries. For details, see the "Project creator tools" section of the ModusToolbox™ tools package user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mtb_user_guide.pdf).

Open the project

After the project has been created, you can open it in your preferred development environment.

Eclipse IDE

If you opened the Project Creator tool from the included Eclipse IDE, the project will open in Eclipse automatically.

For more details, see the Eclipse IDE for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_ide_user_guide.pdf).

Visual Studio (VS) Code

Launch VS Code manually, and then open the generated {project-name}.code-workspace file located in the project directory.

For more details, see the Visual Studio Code for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_vscode_user_guide.pdf).

Command line

If you prefer to use the CLI, open the appropriate terminal, and navigate to the project directory. On Windows, use the command-line 'modus-shell' program; on Linux and macOS, you can use any terminal application. From there, you can run various make commands.

For more details, see the ModusToolbox™ tools package user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mtb_user_guide.pdf).

Operation

  1. Connect the board to your PC using a micro-USB cable through the debug USB connector.

  2. Program the board using one of the following:

    Using Eclipse IDE
    1. Select the application project in the Project Explorer.

    2. In the Quick Panel, scroll down, and click <Application Name> Program (JLink).

    In other IDEs

    Follow the instructions in your preferred IDE.

    Using CLI

    From the terminal, execute the make program command to build and program the application using the default toolchain to the default target. The default toolchain is specified in the application's Makefile but you can override this value manually:

    make program TOOLCHAIN=<toolchain>
    

    Example:

    make program TOOLCHAIN=GCC_ARM
    
  3. Check whether the LED toggles, which confirms the completion of the transfer of three bytes.

    This can also be checked with the help of a logic analyzer or an oscilloscope by probing out the MOSI pin.

    See the Hardware setup section for the pin connections of the supported kits.

Debugging

You can debug the example to step through the code.

In Eclipse IDE

Use the <Application Name> Debug (JLink) configuration in the Quick Panel. For details, see the "Program and debug" section in the Eclipse IDE for ModusToolbox™ user guide.

In other IDEs

Follow the instructions in your preferred IDE.

Design and implementation

In this code example, the SPI block of the XMC™ MCU is configured as the SPI master to send three bytes of data to the SPI slave. After the initialization of the SPI peripheral, the input stage for synchronous serial communication (SSC/SPI) and the SPI channel are set for communication.

The SPI master enables the Slave Select line to start the transfer of three bytes of data. Once data is updated in the transmit buffer, the external trigger event from GPIO pin should be set for transmission to start. The status flag for the SPI channel is continuously set to consider the events into account that take place during communication. Therefore, during the communication, the events occurred must be cleared to detect their next occurrence. The successful completion of transfer is indicated by toggling of an LED on the board.

Related resources

Resources Links
Code examples Using ModusToolbox™ software on GitHub
Device documentation XMC1000 family datasheets
XMC1000 family technical reference manuals
XMC4000 family datasheets
XMC4000 family technical reference manuals
Development kits XMC™ eval boards
Libraries on GitHub mtb-xmclib-cat3 – XMC™ Peripheral Driver Library (XMCLib)
Tools Eclipse IDE for ModusToolbox™ software – MModusToolbox™ software is a collection of easy-to-use libraries and tools enabling rapid development with Infineon MCUs for applications ranging from wireless and cloud-connected systems, edge AI/ML, embedded sense and control, to wired USB connectivity using PSoC™ Industrial/IoT MCUs, AIROC™ Wi-Fi and Bluetooth® connectivity devices, XMC™ Industrial MCUs, and EZ-USB™/EZ-PD™ wired connectivity controllers. ModusToolbox™ incorporates a comprehensive set of BSPs, HAL, libraries, configuration tools, and provides support for industry-standard IDEs to fast-track your embedded application development.

Other resources

Infineon provides a wealth of data at www.infineon.com to help you select the right device, and quickly and effectively integrate it into your design.

For XMC™ MCU devices, see 32-bit XMC™ industrial microcontroller based on Arm® Cortex®-M.

Document history

Document title: CE239240XMC™ MCU: SPI EXTTRG TRANSMIT

Version Description of change
1.0.0 New code example

All other trademarks or registered trademarks referenced herein are the property of their respective owners. The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

© 2023 Infineon Technologies AG

All Rights Reserved.

Legal disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


mtb-example-xmc-spi-external-trigger-transmit's People

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.