Coder Social home page Coder Social logo

huawei-solar-lib's Introduction

pipeline status codecov PyPI version PyPI - Python Version PyPI - License Code style

Python library for connecting to Huawei SUN2000 Inverters over Modbus

This library implements an easy to use interface to locally connect to Huawei SUN2000 inverters over Modbus-TCP or Modbus-RTU following the 'Solar Inverter Modbus Interface Definitions' provided by Huawei.

It was primarily developed to add support for Huawei Solar inverters to Home Assistant, resulting in the following integration: wlcrs/huawei_solar.

Features:

  • Modbus-TCP support: connecting to the inverter via the SDongle, or over the WiFi-AP (SUN2000-<serial_no>) broadcasted by the inverter
  • Modbus-RTU support: connecting to the inverter via the RS485A1 and RS485B1 pins on the COM port
  • Batched reading of Modbus registers and converting them into the correct units
  • Reading Optimizer data via the specialized 'file' Modbus extension
  • Writing to Modbus registers (mostly useful for setting battery parameters)
  • Performing the login sequence to gain 'installer'-level access rights

Note t

Installation

This library is published on PyPI:

pip3 install huawei-solar

Basic usage

The library consists out of a low level interface implemented in huwei_solar.py which implements all the Modbus-operations, and a high level interface in bridge.py which facilitates easy usage (primarily meant for the HA integration).

Using the high level interface

An example on how to read the most interesting registers from the inverter:

bridge = await HuaweiSolarBridge.create(host="192.168.200.1", port=6607)
print(await bridge.update())

This results in the following output being printed:

{'input_power': Result(value=82, unit='W'), 'line_voltage_A_B': Result(value=233.4, unit='V'), 'line_voltage_B_C': Result(value=0.0, unit='V'), 'line_voltage_C_A': Result(value=0.0, unit='V'), 'phase_A_voltage': Result(value=247.2, unit='V'), 'phase_B_voltage': Result(value=0.3, unit='V'), 'phase_C_voltage': Result(value=0.0, unit='V'), 'phase_A_current': Result(value=0.408, unit='A'), 'phase_B_current': Result(value=0.0, unit='A'), 'phase_C_current': Result(value=0.0, unit='A'), 'day_active_power_peak': Result(value=2407, unit='W'), 'active_power': Result(value=70, unit='W'), 'reactive_power': Result(value=-1, unit='VA'), 'power_factor': Result(value=1.0, unit=None), 'grid_frequency': Result(value=50.02, unit='Hz'), 'efficiency': Result(value=100.0, unit='%'), 'internal_temperature': Result(value=24.4, unit='°C'), 'insulation_resistance': Result(value=30.0, unit='MOhm'), 'device_status': Result(value='On-grid', unit=None), 'fault_code': Result(value=0, unit=None), 'startup_time': Result(value=datetime.datetime(2022, 11, 18, 9, 2, 40, tzinfo=datetime.timezone.utc), unit=None), 'shutdown_time': Result(value=None, unit=None), 'accumulated_yield_energy': Result(value=3515.62, unit='kWh'), 'daily_yield_energy': Result(value=0.12, unit='kWh'), 'state_1': Result(value=['Grid-Connected', 'Grid-Connected normally'], unit=None), 'state_2': Result(value=['Locked', 'PV connected', 'DSP data collection'], unit=None), 'state_3': Result(value=['On-grid', 'Off-grid switch disabled'], unit=None), 'alarm_1': Result(value=[], unit=None), 'alarm_2': Result(value=[], unit=None), 'alarm_3': Result(value=[], unit=None), 'pv_01_voltage': Result(value=287.8, unit='V'), 'pv_01_current': Result(value=0.0, unit='A'), 'pv_02_voltage': Result(value=0.0, unit='V'), 'pv_02_current': Result(value=0.0, unit='A'), 'nb_online_optimizers': Result(value=10, unit=None), 'grid_A_voltage': Result(value=234.1, unit='V'), 'grid_B_voltage': Result(value=234.1, unit='V'), 'grid_C_voltage': Result(value=233.1, unit='V'), 'active_grid_A_current': Result(value=-0.48, unit='I'), 'active_grid_B_current': Result(value=-0.46, unit='I'), 'active_grid_C_current': Result(value=-0.56, unit='I'), 'power_meter_active_power': Result(value=-151, unit='W'), 'power_meter_reactive_power': Result(value=187, unit='Var'), 'active_grid_power_factor': Result(value=-0.428, unit=None), 'active_grid_frequency': Result(value=50.0, unit='Hz'), 'grid_exported_energy': Result(value=1705.65, unit='kWh'), 'grid_accumulated_energy': Result(value=1048.0, unit='kWh'), 'grid_accumulated_reactive_power': Result(value=0.0, unit='kVarh'), 'meter_type': Result(value=<MeterType.THREE_PHASE: 1>, unit=None), 'active_grid_A_B_voltage': Result(value=405.3, unit='V'), 'active_grid_B_C_voltage': Result(value=404.6, unit='V'), 'active_grid_C_A_voltage': Result(value=404.6, unit='V'), 'active_grid_A_power': Result(value=-72, unit='W'), 'active_grid_B_power': Result(value=-71, unit='W'), 'active_grid_C_power': Result(value=-7, unit='W'), 'storage_state_of_capacity': Result(value=22.0, unit='%'), 'storage_running_status': Result(value=<StorageStatus.RUNNING: 2>, unit=None), 'storage_bus_voltage': Result(value=454.2, unit='V'), 'storage_bus_current': Result(value=0.0, unit='A'), 'storage_charge_discharge_power': Result(value=12, unit='W'), 'storage_total_charge': Result(value=1094.26, unit='kWh'), 'storage_total_discharge': Result(value=1049.3, unit='kWh'), 'storage_current_day_charge_capacity': Result(value=0.39, unit='kWh'), 'storage_current_day_discharge_capacity': Result(value=0.15, unit='kWh')}

Using the low level interface

Example code:

from huawei_solar import AsyncHuaweiSolar, register_names as rn

slave_id = 0
client = await AsyncHuaweiSolar.create("192.168.200.1", 6607, slave_id)

# Reading a single register

result = await bridge.client.get(rn.NB_PV_STRINGS, slave_id)
print("Number of PV strings: ", result.value)

# Batched reading of multiple registers
# Only possible when they are located closely to each other in the Modbus register space

results = await self.client.get_multiple([rn.LINE_VOLTAGE_A_B, rn.LINE_VOLTAGE_B_C, rn.LINE_VOLTAGE_C_A], self.slave_id)
print("A-B voltage: ", results[0].value)
print("B-C voltage: ", results[1].value)
print("C-A voltage: ", results[2].value)

A good starting point to learn how to use the low level interface is to look at how the high level interface in bridge.py uses it.

Acknowledgements

The initial implementation of v1 was done by @Emilv2.

Subsequent developement on v2 was done by @wlcrs.

huawei-solar-lib's People

Contributors

cristiant avatar emilv2 avatar eriklilljequistscania avatar manio avatar toulbar2 avatar wlcrs avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.