Coder Social home page Coder Social logo

convolutional-denoising-autoencoder's Introduction

Convolutional Autoencoder for Image Denoising

AIM

To develop a convolutional autoencoder for image denoising application.

Problem Statement and Dataset

Using autoencoder, we are trying to remove the noise added in the encoder part and tent to get the output which should be same as the input with minimal loss. The dataset which is used is mnist dataset.

Convolution Autoencoder Network Model

image

DESIGN STEPS

Step 1:

Import the necessary libraries and dataset.

Step 2:

Load the dataset and scale the values for easier computation.

Step 3:

Add noise to the images randomly for both the train and test sets.

Step 4:

Build the Neural Model using Convolutional, Pooling and Up Sampling layers. Make sure the input shape and output shape of the model are identical.

Step 5:

Pass test data for validating manually.

Step 6:

Plot the predictions for visualization.

PROGRAM

Developed by: Harshini M
Register Number: 212220230022
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import utils
from tensorflow.keras import models
from tensorflow.keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
(x_train, _), (x_test, _) = mnist.load_data()
x_train.shape
x_train_scaled = x_train.astype('float32') / 255.
x_test_scaled = x_test.astype('float32') / 255.
x_train_scaled = np.reshape(x_train_scaled, (len(x_train_scaled), 28, 28, 1))
x_test_scaled = np.reshape(x_test_scaled, (len(x_test_scaled), 28, 28, 1))
noise_factor = 0.5
x_train_noisy = x_train_scaled + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train_scaled.shape) 
x_test_noisy = x_test_scaled + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test_scaled.shape) 

x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
n = 10
plt.figure(figsize=(20, 2))
for i in range(1, n + 1):
    ax = plt.subplot(1, n, i)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()
input_img = keras.Input(shape=(28, 28, 1))

x = layers.Conv2D(32, (3,3), activation='relu',padding ='same')(input_img)
x = layers.MaxPool2D((2,2), padding = 'same')(x)
x = layers.Conv2D(32, (3,3), activation='relu',padding ='same')(x)
encoded = layers.MaxPooling2D((2, 2), padding='same')(x)

# Encoder output dimension is ## Mention the dimention ##

x = layers.Conv2D(32, (3,3), activation='relu',padding ='same')(encoded)
x = layers.UpSampling2D((2,2))(x)
x = layers.Conv2D(32, (3,3), activation='relu',padding ='same')(x)
x = layers.UpSampling2D((2,2))(x)
decoded = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = keras.Model(input_img, decoded)
autoencoder.summary()
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
autoencoder.fit(x_train_noisy, x_train_scaled,
                epochs=2,
                batch_size=128,
                shuffle=True,
                validation_data=(x_test_noisy, x_test_scaled))
metrics = pd.DataFrame(autoencoder.history.history)
metrics.head()
metrics[['loss','val_loss']].plot()
decoded_imgs = autoencoder.predict(x_test_noisy)
n = 10
plt.figure(figsize=(20, 4))
for i in range(1, n + 1):
    # Display original
    ax = plt.subplot(3, n, i)
    plt.imshow(x_test_scaled[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

    # Display noisy
    ax = plt.subplot(3, n, i+n)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)    

    # Display reconstruction
    ax = plt.subplot(3, n, i + 2*n)
    plt.imshow(decoded_imgs[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

OUTPUT

Training Loss, Validation Loss Vs Iteration Plot

image

Original vs Noisy Vs Reconstructed Image

image

RESULT

Thus, a Convolutional Autoencoder for Denoising was sucessfully implemented.

convolutional-denoising-autoencoder's People

Contributors

harshini1331 avatar obedotto avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.