Coder Social home page Coder Social logo

goropikari / solutionqcqinielsenchuang Goto Github PK

View Code? Open in Web Editor NEW
251.0 16.0 66.0 3.19 MB

Solution for Quantum Computation and Quantum Information by Nielsen and Chuang

TeX 99.79% Dockerfile 0.21%
quantum-information quantum-computing quantum-mechanics

solutionqcqinielsenchuang's Introduction

Solution for Quantum Computation and Quantum Information

get the PDF

This is unofficial solution manual for "Quantum Computation and Quantum Information: 10th Anniversary Edition" (ISBN-13: 978-1107002173) by Nielsen and Chuang

There is no guarantee that these solutions are correct.

If you have some comment, please feel free to open an issue or a PR.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Compile tex files with Docker

docker-compose build
docker-compose run qcqi

Solved exercises

Chapter 2

  • 2.1
  • 2.2
  • 2.3
  • 2.4
  • 2.5
  • 2.6
  • 2.7
  • 2.8
  • 2.9
  • 2.10
  • 2.11
  • 2.12
  • 2.13
  • 2.14
  • 2.15
  • 2.16
  • 2.17
  • 2.18
  • 2.19
  • 2.20
  • 2.21
  • 2.22
  • 2.23
  • 2.24
  • 2.25
  • 2.26
  • 2.27
  • 2.28
  • 2.29
  • 2.30
  • 2.31
  • 2.32
  • 2.33
  • 2.34
  • 2.35
  • 2.36
  • 2.37
  • 2.38
  • 2.39 partially solved
  • 2.40
  • 2.41
  • 2.42
  • 2.43
  • 2.44
  • 2.45
  • 2.46
  • 2.47
  • 2.48
  • 2.49
  • 2.50 partially solved
  • 2.51
  • 2.52
  • 2.53
  • 2.54
  • 2.55
  • 2.56
  • 2.57
  • 2.58
  • 2.59
  • 2.60
  • 2.61
  • 2.62
  • 2.63
  • 2.64
  • 2.65
  • 2.66
  • 2.67
  • 2.68
  • 2.69
  • 2.70
  • 2.71
  • 2.72
  • 2.73
  • 2.74
  • 2.75
  • 2.76 Unsolved
  • 2.77
  • 2.78
  • 2.79
  • 2.80
  • 2.81
  • 2.82

Chapter 8

  • 8.1
  • 8.2
  • 8.3
  • 8.4
  • 8.5
  • 8.6
  • 8.7
  • 8.8
  • 8.9
  • 8.10
  • 8.11
  • 8.12
  • 8.13
  • 8.14
  • 8.15
  • 8.16
  • 8.17
  • 8.18
  • 8.19
  • 8.20
  • 8.21
  • 8.22
  • 8.23
  • 8.24
  • 8.25
  • 8.26
  • 8.27
  • 8.28
  • 8.29
  • 8.30
  • 8.31
  • 8.32
  • 8.33
  • 8.34
  • 8.35

Chapter 9

  • 9.1
  • 9.2
  • 9.3
  • 9.4
  • 9.5
  • 9.6
  • 9.7
  • 9.8
  • 9.9
  • 9.10
  • 9.11
  • 9.12
  • 9.13
  • 9.14
  • 9.15
  • 9.16
  • 9.17
  • 9.18
  • 9.19
  • 9.20
  • 9.21
  • 9.22
  • 9.23
  • Problem 1
  • Problem 2
  • Problem 3

Chapter 11

  • 11.1
  • 11.2
  • 11.3
  • 11.4
  • 11.5
  • 11.6
  • 11.7
  • 11.8
  • 11.9
  • 11.10
  • 11.11
  • 11.12
  • 11.13
  • 11.14
  • 11.15
  • 11.16
  • 11.17
  • 11.18
  • 11.19
  • 11.20
  • 11.21
  • 11.22
  • 11.23
  • 11.24
  • 11.25
  • 11.26

Chapter 12

  • 12.1
  • 12.2
  • 12.3
  • 12.4
  • 12.5
  • 12.6
  • 12.7
  • 12.8
  • 12.9
  • 12.10
  • 12.11
  • 12.12
  • 12.13
  • 12.14
  • 12.15
  • 12.16
  • 12.17
  • 12.18
  • 12.19
  • 12.20
  • 12.21
  • 12.22
  • 12.23
  • 12.24
  • 12.25
  • 12.26
  • 12.27
  • 12.28
  • 12.29
  • 12.30
  • 12.31
  • 12.32
  • 12.33
  • 12.34
  • 12.35
  • 12.36
  • 12.37
  • 12.38

solutionqcqinielsenchuang's People

Contributors

goropikari avatar ito-ryo avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

solutionqcqinielsenchuang's Issues

2.50

Eigenvector values are wrong I believe

Exercise 2.32

The proof here for Exercise 2.32 appears to assume P^2=P implies P is a projector. I am not certain this is true (the converse is certainly true, a projector satisfies P^2=P as indicated by Exercise 2.16), but could there not be other non-projectors that also satisfy P^2=P ?

Exercise 2.81

I believe a more general treatment will consider repeated singular values. In that situation, it was useful for me to notice that unitary matrices form a group, so left multiplication by a unitary matrix on a unitary matrix is equal to right multiplication by some other unitary matrix, thus allowing us to convert U_a tensor U_b to I_a tensor U_r

9.14 Correction

In the box,

image

This is wrong. A positive operator makes sure that it has non-negative eigenvalues.

When performing $\sqrt A$, you need to sqrt the eigenvalues under the expression of spectral decomposition:

$$ \sqrt A = \sum_i \sqrt \lambda_i | i \rangle \langle i | $$

Exercise 2.64

The actual solution is not too hard (though I also struggled a bit).

Let $1 \le k \le m$ and denote
$H = span{\phi_1,...,\phi_m }$,
$H_k = span{\phi_1,...,\phi_{k-1}, \phi_{k+1},...,\phi_m }$.
Because of linear independence, subspace $H$ has dimension $m$ and $H_k$ has dimension $m-1$. Now denote $E_k = Proj(H) - Proj(H_k)$, where $Proj(H)$ denotes the (ortho)projection operator on the subspace $H$. Clearly, $E_k \ge 0$ and $E_k \neq 0$.
Also, denote $E_{m+1} = I - E_1-...-E_m$.
Now calculate $\langle \phi_i|E_k|\phi_i \rangle = \langle \phi_i|Proj(H)|\phi_i \rangle - \langle \phi_i|Proj(H_k)|\phi_i \rangle = 1 - \langle \phi_i|Proj(H_k)|\phi_i \rangle = 0$ if $i \neq k$ and $>0$ if $i=k$. This is what we needed.

Exercise 2.76

ex2-76
I'm not sure about the correctness of the formalism, but this is my main idea: extend the smaller bases with null coefficients in the expansion in order to reach a situation similar to that in the standard proof.

Exercise 2.63

We actually need to prove the existence of unitaries $U_m$, not just verify the correctness of the formula $M_m = U_m\sqrt{E_m}$.

So, the correct solution is something like this:

Suppose $M_m^\dagger M_m = E_m$.
If $E_m > 0$ then denote $U_m = M_m(\sqrt{E_m})^{-1}$. We can verify that $U_m$ is indeed unitary, because we can deduce that $U_m^\dagger U_m = I$.
If $E_m \ge 0$ then use limiting argument similar to this https://en.wikipedia.org/wiki/Cholesky_decomposition#Proof_for_positive_semi-definite_matrices
I.e. consider $E_m^\prime = E_m + \frac{1}{k}I$ and so on...

Exercise 2.72 (1) Correction

Hi, I believe in the solution given for 2.72 (1), the 1/2 factor in a and d is forgotten. So I believe it should be:
If $\rho$ is positive, all eigenvalues of $\rho$ should be non-negative.
\begin{align*}
\det (\rho - \lambda I) &= (a- \lambda) (b - \lambda) - |b|^2 = \lambda^2 - (a+d)\lambda + ad - |b^2| = 0\
\lambda &= \frac{(a+d) \pm \sqrt{(a+d)^2 - 4 (ad - |b|^2)}}{2}\
&= \frac{1/2 \pm \sqrt{1/4 - 4 \left(\frac{1 - r_3^2}{4} - \frac{r_1^2 + r_2^2}{4} \right)}}{2}\
&= \frac{1/2 \pm \sqrt{1/4 - (1 - r_1^2 - r_2^2 - r_3^2)}}{2}\
&= \frac{1/2 \pm \sqrt{|\vec{r}|^2-3/4}}{2}\
.\end{align*}
Because $|\vec{r}|^2 \le 1$, $\sqrt{|\vec{r}|^2-3/4} \le \sqrt{1/4} = 1/2$ if real, and $\lambda$ is non-negative.

Error p.408. eq (9.49)

The sum $\sum_i (p_i - q_i) = \sum_i p_i - \sum_i q_i = 1 - 1 = 0$? So the error needs to be fixed a different way?

Error in Exercise 2.71 Solution

Although the square of the density operator $\rho^2$ is positive, and thus permits a spectral decomposition, the eigenvalues associated with that spectral decomposition are not necessarily the squares of the original probabilities $p_i$ (used to construct the density operator), a assumption upon which the proof relies.

(This is because the spectral decomposition of the density operator has eigenvalues that do not necessarily coincide with the probabilities of the states used to construct the density operator, as shown in p.103 of the book.)

Chapter 1

Chapter 1 also contains 2 exercises. Although they are quite open in nature, I would have liked to see someone's attempt on answering them.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.