Coder Social home page Coder Social logo

edwardyang12 / implicit_depth Goto Github PK

View Code? Open in Web Editor NEW

This project forked from nvlabs/implicit_depth

0.0 0.0 0.0 1.19 MB

RGB-D Local Implicit Function for Depth Completion of Transparent Objects

License: Other

Dockerfile 0.53% Python 95.67% Shell 0.09% C++ 0.81% Cuda 2.90%

implicit_depth's Introduction

RGB-D Local Implicit Function for Depth Completion of Transparent Objects

Overview

This repository maintains the official implementation of our CVPR 2021 paper:

RGB-D Local Implicit Function for Depth Completion of Transparent Objects

By Luyang Zhu, Arsalan Mousavian, Yu Xiang, Hammad Mazhar, Jozef van Eenbergen, Shoubhik Debnath, Dieter Fox

Requirements

The code has been tested on the following system:

  • Ubuntu 18.04
  • Nvidia GPU (4 Tesla V100 32GB GPUs) and CUDA 10.2
  • python 3.7
  • pytorch 1.6.0

Installation

Docker (Recommended)

We provide a Dockerfile for building a container to run our code. More details about GPU accelerated Docker containers can be found here.

Local Installation

We recommend creating a new conda environment for a clean installation of the dependencies.

conda create --name lidf python=3.7
conda activate lidf

Make sure CUDA 10.2 is your default cuda. If your CUDA 10.2 is installed in /usr/local/cuda-10.2, add the following lines to your ~/.bashrc and run source ~/.bashrc:

export PATH=$PATH:/usr/local/cuda-10.2/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.2/lib64
export CPATH=$CPATH:/usr/local/cuda-10.2/include

Install libopenexr-dev

sudo apt-get update && sudo apt-get install libopenexr-dev

Install dependencies, we use ${REPO_ROOT_DIR} to represent the working directory of this repo.

cd ${REPO_ROOT_DIR}
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Dataset Preparation

ClearGrasp Dataset

ClearGrasp can be downloaded at their official website (Both training and testing dataset are needed). After you download zip files and unzip them on your local machine, the folder structure should be like

${DATASET_ROOT_DIR}
├── cleargrasp
│   ├── cleargrasp-dataset-train
│   ├── cleargrasp-dataset-test-val

Omniverse Object Dataset

Omniverse Object Dataset can be downloaded here. After you download zip files and unzip them on your local machine, the folder structure should be like

${DATASET_ROOT_DIR}
├── omniverse
│   ├── train
│   │	├── 20200904
│   │	├── 20200910

Soft link dataset

cd ${REPO_ROOT_DIR}
ln -s ${DATASET_ROOT_DIR}/cleargrasp datasets/cleargrasp
ln -s ${DATASET_ROOT_DIR}/omniverse datasets/omniverse

Testing

We provide pretrained checkpoints at the Google Drive. After you download the file, please unzip and copy the checkpoints folder under ${REPO_ROOT_DIR}.

Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

# To test first stage model (LIDF), use the following line
cfg_paths=experiments/implicit_depth/test_lidf.yaml
# To test second stage model (refinement model), use the following line
cfg_paths=experiments/implicit_depth/test_refine.yaml

After that, run the testing code:

cd src
bash experiments/implicit_depth/run.sh

Training

First stage model (LIDF)

Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_lidf.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

Second stage model (refinement model)

In ${REPO_ROOT_DIR}/src/experiments/implicit_depth/train_refine.yaml, set lidf_ckpt_path to the path of the best checkpoint in the first stage training. Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_refine.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

Second stage model (refinement model) with hard negative mining

In ${REPO_ROOT_DIR}/src/experiments/implicit_depth/train_refine_hardneg.yaml, set lidf_ckpt_path to the path of the best checkpoint in the first stage training, set checkpoint_path to the path of the best checkpoint in the second stage training. Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_refine_hardneg.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

License

This work is licensed under NVIDIA Source Code License - Non-commercial.

Citation

If you use this code for your research, please citing our work:

@inproceedings{zhu2021rgbd,
author    = {Luyang Zhu and Arsalan Mousavian and Yu Xiang and Hammad Mazhar and Jozef van Eenbergen and Shoubhik Debnath and Dieter Fox},
title     = {RGB-D Local Implicit Function for Depth Completion of Transparent Objects},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year      = {2021}
}

implicit_depth's People

Contributors

luyangzhu avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.