Coder Social home page Coder Social logo

bayesiannonparametrics.jl's Introduction

BayesianNonparametrics.jl

BayesianNonparametrics.jl is a Julia package implementing state-of-the-art Bayesian nonparametric models for medium-sized unsupervised problems. The software package brings Bayesian nonparametrics to non-specialists allowing the widespread use of Bayesian nonparametric models. Emphasis is put on consistency, performance and ease of use allowing easy access to Bayesian nonparametric models inside Julia.

BayesianNonparametrics.jl allows you to

  • explain discrete or continous data using: Dirichlet Process Mixtures or Hierarchical Dirichlet Process Mixtures
  • analyse variable dependencies using: Variable Clustering Model
  • fit multivariate or univariate distributions for discrete or continous data with conjugate priors
  • compute point estimtates of Dirichlet Process Mixtures posterior samples

Requirements

  • julia version 0.5
  • packages listed in REQUIREMENTS file

Installation

You can clone the package into your running julia 0.5 installation using

Pkg.clone("https://github.com/OFAI/BayesianNonparametrics.jl.git")

Documentation

Documentation is available on readthedocs: http://bnpjl.readthedocs.org/en/latest/

Example

The following example illustrates the use of BayesianNonparametrics.jl for clustering of continuous observations using a Dirichlet Process Mixture of Gaussians.

After loading the package:

using BayesianNonparametrics

we can generate a 2D synthetic dataset (or use a multivariate continuous dataset of interest)

(X, Y) = bloobs(randomize = false)

and construct the parameters of our base distribution:

μ0 = vec(mean(X, 1))
κ0 = 5.0
ν0 = 9.0
Σ0 = cov(X)
H = WishartGaussian(μ0, κ0, ν0, Σ0)

After defining the base distribution we can specify the model:

model = DPM(H)

which is in this case a Dirichlet Process Mixture. Each model has to be initialised, one possible initialisation approach for Dirichlet Process Mixtures is a k-Means initialisation:

modelBuffer = init(X, model, KMeansInitialisation(k = 10))

The resulting buffer object can now be used to apply posterior inference on the model given $X$. In the following we apply Gibbs sampling for 500 iterations without burn in or thining:

models = train(modelBuffer, DPMHyperparam(), Gibbs(maxiter = 500))

You shoud see the progress of the sampling process in the command line. After applying Gibbs sampling, it is possible explore the posterior based on their posterior densities,

densities = Float64[m.energy for m in models]

number of active components

activeComponents = Int[sum(m.weights .> 0) for m in models]

or the groupings of the observations:

assignments = [m.assignments for m in models]

The following animation illustrates posterior samples obtained by a Dirichlet Process Mixture:

alt text

Alternatively, one can compute a point estimate based on the posterior similarity matrix:

A = reduce(hcat, assignments)
(N, D) = size(X)
PSM = ones(N, N)
M = size(A, 2)
for i in 1:N
  for j in 1:i-1
    PSM[i, j] = sum(A[i,:] .== A[j,:]) / M
    PSM[j, i] = PSM[i, j]
  end
end

and find the optimal partition which minimizes the lower bound of the variation of information:

mink = minimum([length(m.weights) for m in models])
maxk = maximum([length(m.weights) for m in models])
(peassignments, _) = pointestimate(PSM, method = :average, mink = mink, maxk = maxk)

The grouping wich minimizes the lower bound of the variation of information is illustrated in the following image: alt text

Build Status

Coverage Status

codecov.io

bayesiannonparametrics.jl's People

Contributors

trappmartin avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.