Coder Social home page Coder Social logo

brioglade / openswpc Goto Github PK

View Code? Open in Web Editor NEW

This project forked from tktmyd/openswpc

0.0 2.0 0.0 43.21 MB

A Seismic Wave Propagation Code by Parallel Finite Difference Method

License: MIT License

Shell 2.17% Fortran 95.56% C++ 0.10% Makefile 2.18%

openswpc's Introduction

OpenSWPC -- An Open-source Seismic Wave Propagation Code

Corresponding Author: Takuto Maeda

example

Description

This software simulate seismic wave propagation by solving equations of motion with constitutive equations of elastic/viscoelastic medium by finite difference method (FDM) under message passing interface (MPI) environment in 3D and 2D (P-SV or SH) media.

This package also provides a set of tools for visualizing/converting simulation output.

License

MIT License. Please see LICENSE file for details.

The author request that the user cite (at least one of) the following accompanying paper or related papers in any publications that result from the use of this software, although this is not an obligation.

Download

The newest release and archived versions: https://github.com/takuto-maeda/OpenSWPC/releases

The development snapshot: https://github.com/takuto-maeda/OpenSWPC/archive/develop.zip

Accompanying Paper

Maeda, T., S. Takemura, and T. Furumura (2017), OpenSWPC: An open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media, Earth Planets Space, 69, 102. doi:10.1186/s40623-017-0687-2

Related Papers

Furumura, T. and L. Chen (2004), Large scale parallel simulation and visualization of 3D seismic wavefield using the Earth Simulator, Comp. Model. Eng. Sci., 6, 153-168. doi:10.3970/cmes.2004.006.153

Furumura, T. and L. Chen (2005), Parallel simulation of strong ground motions during recent and historical damaging earthquakes in Tokyo, Japan, Parallel Computing, 31, 149-165. doi:10.1016/j.parco.2005.02.003

Furumura, T. Hayakawa, M. Nakamura, K. Koketsu, and T. Baba (2008), Development of long-period ground motions from the Nankai Trough, Japan, earthquakes: Observations and computer simulation of the 1944 Tonankai (Mw 8.1) and the 2004 SE Off-Kii Peninsula (Mw 7.4) earthquakes, Pure Appl. Geophys., 165, 585-607. doi:10.1007/s00024-008-0318-8

Furumura, T. and T. Saito (2009), An integrated simulation of ground motion and tsunami for the 1944 Tonankai earthquake using high-performance super computers, J. Disast. Res., 4, 118-126. https://www.fujipress.jp/jdr/dr/dsstr000400020118/

Noguchi, S., T. Maeda, and T. Furumura (2013), FDM simulation of an anomalous later phase from the Japan Trench subduction zone earthquakes, Pure Appl. Geophys., 170, 95-108. doi:10.1007/s00024-011-0412-1

Maeda, T., and T. Furumura (2013), FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion, Pure Appl. Geophys., 170, 109-127. doi:10.1007/s00024-011-0430-z

Maeda, T., T. Furumura, S. Noguchi, S. Takemura, S. Sakai, M. Shinohara, K. Iwai, S. J. Lee (2013), Seismic and tsunami wave propagation of the 2011 Off the Pacific Coast of Tohoku Earthquake as inferred from the tsunami-coupled finite difference simulation, Bull. Seism. Soc. Am., 103, 1456-1472. doi:10.1785/0120120118

Maeda, T., T. Furumura, and K. Obara (2014), Scattering of teleseismic P-waves by the Japan Trench: A significant effect of reverberation in the seawater column, Earth Planet. Sci. Lett., 397, 101-110. doi:10.1016/j.epsl.2014.04.037

Noguchi, S., T. Maeda, and T. Furumura (2016), Ocean-influenced Rayleigh waves from outer-rise earthquakes and their effects on durations of long-period ground motion, Geophys. J. Int., 205, 1099-1107. doi:10.1093/gji/ggw074

Takemura, S., T. Maeda, T. Furumura, and K. Obara (2016), Constraining the source location of the 30 May 2015 (Mw 7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms: occurrence of deep-focus earthquake at the bottom of a subducting slab, Geophys. Res. Lett., 43, 4297-4302. doi:10.1002/2016GL068437

Yoshimitsu, N., T. Furumura, and T. Maeda (2016), Geometric effect on a laboratory-scale wavefield inferred from a three-dimensional numerical simulation, J. Appl. Geophys., 132, 184-192. doi:10.1016/j.jappgeo.2016.07.002

Maeda, T., K. Nishida, R. Takagi, and K. Obara (2016), Reconstruction of a 2D seismic wavefield by seismic gradiometry, Prog. Earth Planet. Sci., 3, 31. doi:10.1186/s40645-016-0107-4

Todoriki, M., T. Furumura, and T. Maeda (2017), Effects of seawater on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes, Geophys. J. Int., 208, 226-233. doi:10.1093/gji/ggw388

Toya, M., A. Kato, T. Maeda, K. Obara, T. Takeda, and K. Yamaoka (2017), Down-dip variations in a subducting low-velocity zone linked to episodic tremor and slip: a new constraint from ScSp waves, Scientific Reports, 7, 2868. doi:10.1038/s41598-017-03048-6

Morioka, H., H. Kumagai, and T. Maeda (2017), Theoretical basis of the amplitude source location method for volcano-seismic signals, J. Geophys. Res., 122, 6538-6551. doi:10.1002/2017JB013997

openswpc's People

Contributors

tktmyd avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.