Coder Social home page Coder Social logo

deep-learning-in-hebrew's Introduction

Deep-Learning-in-Hebrew

למידת מכונה ולמידה עמוקה בעברית

Add a star if the repository helped you 😊

MDLH

For any issue please contact us at [email protected].

People

Authors:

Chapter Authors:

Contributors:

Citation

If you find this book useful in your research work, please consider citing:

@InProceedings{MDLH,
author = {Raviv, Avraham and Erlihson, Mike},
booktitle = {Machine and Deep learning in Hebrew},
year = {2021}
}

Table of Content

1.1 What is Machine Learning?

  • 1.1.1. The Basic Concept

  • 1.1.2. Data, Tasks and Learning

1.2. Applied Math

  • 1.2.1. Linear Algebra

  • 1.2.2. Calculus

  • 1.2.3. Probability

2.1. Supervised Learning Algorithms

  • 2.1.1. Support Vector Machines (SVM)

  • 2.1.2. Naïve Bayes

  • 2.1.3. K-nearest neighbors (K-NN)

  • 2.1.4. Quadratic\Linear Discriminant Analysis (QDA\LDA)

  • 2.1.5. Decision Trees

2.2. [Unsupervised Learning Algorithms]

  • 2.2.1. K-means

  • 2.2.2. Mixture Models

  • 2.2.3. Expectation–maximization (EM)

  • 2.2.4. Hierarchical Clustering

  • 2.2.5. Local Outlier Factor

2.3. [Dimensionally Reduction]

  • 2.3.1. Principal Components Analysis (PCA)

  • 2.3.2. t-distributed Stochastic Neighbor Embedding (t-SNE)

  • 2.3.3. Uniform Manifold Approximation and Projection (UMAP)

2.4. [Ensemble Learning]

  • 2.4.1. Introduction to Ensemble Learning

  • 2.4.2. Bagging

  • 2.4.3. Boosting

3.1. Linear Regression

  • 3.1.1. The Basic Concept

  • 3.1.2. Gradient Descent

  • 3.1.3. Regularization and Cross Validation

  • 3.1.4. Linear Regression as Classifier

3.2. Softmax Regression

  • 3.2.1. Logistic Regression

  • 3.2.2. Cross Entropy and Gradient Descent

  • 3.2.3. Optimization

  • 3.2.4. SoftMax Regression – Multiclass Logistic Regression

  • 3.2.5. SoftMax Regression as Neural Network

4.1. MLP – Multilayer Perceptrons

  • 4.1.1. From a Single Neuron to Deep Neural Network

  • 4.1.2. Activation Function

  • 4.1.3. Xor

4.2. Computational Graphs and Propagation

  • 4.2.1. Computational Graphs

  • 4.2.2. Forward and Backward propagation

  • 4.2.3. Back Propagation and Stochastic Gradient Descent

4.3. Optimization

  • 4.3.1. Data Normalization

  • 4.3.2. Weight Initialization

  • 4.3.3. Batch Normalization

  • 4.3.4. Mini Batch

  • 4.3.5. Gradient Descent Optimization Algorithms

4.4. Generalization

  • 4.4.1. Regularization

  • 4.4.2. Weight Decay

  • 4.4.3. Model Ensembles and Drop Out

  • 4.4.4. Data Augmentation

5.1. Convolutional Layers

  • 5.1.1. From Fully-Connected Layers to Convolutions

  • 5.1.2. Padding, Stride and Dilation

  • 5.1.3. Pooling

  • 5.1.4. Training

  • 5.1.5. Convolutional Neural Networks (LeNet)

5.2. CNN Architectures

  • 5.2.1. AlexNet

  • 5.2.2. VGG

  • 5.2.3. GoogleNet

  • 5.2.4. Residual Networks (ResNet)

  • 5.2.5. Densely Connected Networks (DenseNet)

  • 5.2.6. U-Net

  • 5.2.7. Transfer Learning

6.1. Sequence Models

  • 6.1.1. Recurrent Neural Networks

  • 6.1.2. Learning Parameters

6.2. RNN Architectures

  • 6.2.1. Long Short-Term Memory (LSTM)

  • 6.2.2. Gated Recurrent Units (GRU)

  • 6.2.3. Deep RNN

  • 6.2.4. Bidirectional RNN

  • 6.2.5. Sequence to Sequence Learning

7.1. Variational AutoEncoder (VAE)

  • 7.1.1. Dimensionality Reduction

  • 7.1.2. Autoencoders (AE)

  • 7.1.3. Variational AutoEncoders (VAE)

7.2. Generative Adversarial Networks (GANs)

  • 7.2.1. Generator and Discriminator

  • 7.2.2. DCGAN

  • 7.2.3. Conditional GAN (cGAN)

  • 7.2.4. Pix2Pix

  • 7.2.5. CycleGAN

  • 7.2.6. Progressively Growing (ProGAN)

  • 7.2.7. StyleGAN

  • 7.2.8. Wasserstein GAN

7.3. Auto-Regressive Generative Models

  • 7.3.1. PixelRNN

  • 7.3.2. PixelCNN

  • 7.3.3. Gated PixelCNN

  • 7.3.4. PixelCNN++

8.1. Sequence to Sequence Learning and Attention

  • 8.1.1. Attention in Seq2Seq Models

  • 8.1.2. Bahdanau Attention and Luong Attention

8.2. Transformer

  • 8.2.1. Positional Encoding

  • 8.2.2. Self-Attention Layer

  • 8.2.3. Multi Head Attention

  • 8.2.4. Transformer End to End

  • 8.2.5. Transformer Applications

9.1. Object Detection

  • 9.1.1. Introduction to Object Detection

  • 9.1.2. R-CNN

  • 9.1.3. You Only Look Once (YOLO)

  • 9.1.4. Single Shot Detector (SSD)

  • 9.1.5 Spatial Pyramid Pooling (SPP-net)

  • 9.1.6. Feature Pyramid Networks

  • 9.1.7. Deformable Convolutional Networks

  • 9.1.8. DE:TR: Object Detection with Transformers

9.2. Segmentation

  • 9.2.1. Semantic Segmentation Vs. Instance Segmentation

  • 9.2.2. SegNet neural network

  • 9.2.3. Atrous Convolutions

  • 9.2.4. Atrous Spatial Pyramidal Pooling

  • 9.2.5. Conditional Random Fields usage for improving final output

  • 9.2.6. See More Than Once -- Kernel-Sharing Atrous Convolution

9.3. Face Recognition and Pose Estimation

  • 9.3.1. Face Recognition

  • 9.3.2. Pose Estimation

9.5. Few-Shot Learning

  • 9.5.1. The Problem

  • 9.5.2 Metric Learning

  • 9.5.3. Meta-Learning (Learning-to-Learn)

  • 9.5.4. Data Augmentation

  • 9.5.5. Zero-Shot Learning

10.1. Language Models and Word Representation

  • 10.1.1. Basic Language Models

  • 10.1.2. Word Representation (Vectors) and Word Embeddings

  • 10.1.3. COntextual Embeddings

11.1. Introduction to RL

  • 11.1.1. Markov Decision Process (MDP) and RL

  • 11.1.2. Planning

  • 11.1.3. Learning Algorithms

11.2. Model Free Prediction

  • 11.2.1. Monte-Carlo (MC) Policy Evaluation

  • 11.2.2. Temporal Difference (TD) – Bootstrapping

  • 11.2.3. TD(λ)

11.3. Model Free Control

  • 11.3.1. SARSA - on-policy TD control

  • 11.3.2. Q-Learning

  • 11.3.3. Function Approximation

  • 11.3.4. Policy-Based RL

  • 11.3.5. Actor-Critic

11.4. Model Based Control

  • 11.4.1. Known Model – Dyna algorithm

  • 11.4.2. Known Model – Tree Search

  • 11.4.3. Planning for Continuous Action Space

11.5. Exploration and Exploitation

  • 11.5.1. N-armed bandits

  • 11.5.2. Full MDP

11.6. Learning From an Expert

  • 11.6.1. Imitation Learning

  • 11.6.2. Inverse RL

11.7. Partially Observed Markov Decision Process (POMDP)

12.1. Introduction to Graphs

  • 12.1.1. Represent Data as a Graph

  • 12.1.2. Tasks on Graphs

  • 12.1.3. The challenge of learning graphs


כל הזכויות שמורות Ⓒ

deep-learning-in-hebrew's People

Contributors

avrahamraviv avatar avtsoof avatar michaelerlihson avatar nitzanmadar avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

deep-learning-in-hebrew's Issues

typo in Page 4 of the introduction

On page 4 of the introduction, in the matrix summation,
some of the indices in A+B are wrong.
The top right should be 1,m (and not 1,n)
and the bottom left should be n,1 and not m,1

Thanks :-)

chapter2- typo

image
missing commas in phi(x)^T
should be:
(sqrt(2)x1s2, x1^2, x2^2)

typo

in the intro to ML, it says "הקלט נשאר לכאורה קבוע, אבל הפלט משתנה" and then follows to give an example: "עבור זמני יציאה שונים(!), האלגוריתם יעריך זמני נסיעה שונים"
The problem is where i marked (!). if the example is constant input provides different output, it should be the same exit times produces different trip time.

typo

last line on page 18, you forgot to split the summation

Ebook version

Gread book and materials! It would be great if you can make an ebook version ☺️

Small typo

Instead of "Peoples" it should read "People"

Typo in page 3

הערה: קיימות דרישות נוספות למרחב וקטורי אך הם מעבר לנדרש…

דרישות זה בלשון נקבה, צ.ל הן.

VAE 7.1.3

יכול להיות של הבנתי נכון, אבל בחלק 7.1.3 נאמר שאם נקח וקטור רנדומלי מהמרחב הלטנטי של אוטואנקודר רגיל אז סביר להניח שהוא לא יהיה דומה לדוגמא המקורית. אני לא לא בטוח שאני מבין למה. במידה ומדובר באוטואנקודר שמצליח לשחזר בצורה מדויקת את האינפוט שהוא מקבל אז הוא יהיה מסוגל לשחזר כל וקטור מהמרחב הלטנטי שלו כמו צריך, לא?

שגיאה בהגדרה

בעמוד 4, במקטע של כפל מטריצות.
כתוב שמספר השורות של המטריצה הראשונה צריך להיות שווה למספר העמודות של המטריצה השניה.
(אני נמנע משימוש באותיות אנגליות כי זה מסרבל את הכל)
אני מאמין שהכוונה הייתה ההיפך - עמודות בראשונה ושורות בשניה

Typo in machine learning (chapter 2)

There is a typo in the second page of machine learning third row from the end of the page (section non-linear separation) "בפרדה" instead of "הפרדה".
Nice book Thanks!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.