Coder Social home page Coder Social logo

ashutosh1919 / neuro-symbolic-sudoku-solver Goto Github PK

View Code? Open in Web Editor NEW
68.0 4.0 7.0 4.23 MB

⚙️ Solving sudoku using Deep Reinforcement learning in combination with powerful symbolic representations.

Home Page: https://arxiv.org/abs/2307.00653

License: Apache License 2.0

Python 100.00%
neurosymboliccomputing machine-learning deep-learning reinforcement-learning neural-network neural-logic-machines sudoku-solver sudoku artificial-intelligence artificial-neural-networks

neuro-symbolic-sudoku-solver's Introduction

Neuro-Symbolic Sudoku Solver

PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please note that this is not an officially supported Google product. This project is a direct application of work done as part of original NLM project. We have applied NLM concept to solve more complex (Solving Sudoku) problems. We have also described the internal workings in Medium Blog.

⭐ Star us on GitHub — it helps!

Neural Logic Machine (NLM) is a neural-symbolic architecture for both inductive learning and logic reasoning. NLMs use tensors to represent logic predicates. This is done by grounding the predicate as True or False over a fixed set of objects. Based on the tensor representation, rules are implemented as neural operators that can be applied over the premise tensors and generate conclusion tensors. Learn more about NLM from the paper.

Predicate Logic

We have used below boolean predicates as inputs to NLM architecture:

  1. isRow(r, num): Does number num present in row r inside Sudoku grid?
  2. isColumn(c, num): Does number num present in column c inside Sudoku grid?
  3. isSubMat(r, c, num): Does number num present in 3x3 sub-matrix starting with row r and column c.

Note here that isRow and isColumn are binary predicates and isSubMat is ternary predicate. We have stacked the results of isRow and isColumn and inputted as binary predicate.

The core architecture of the model contains deep reinforcement learning leveraging representation power of first order logic predicates.

Prerequisites

  • Python 3.x
  • PyTorch 0.4.0
  • Jacinle. We use the version ed90c3a for this repo.
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Clone this repository:

git clone https://github.com/ashutosh1919/neuro-symbolic-sudoku-solver.git --recursive

Install Jacinle included as a submodule. You need to add the bin path to your global PATH environment variable:

export PATH=<path_to_neural_logic_machines>/third_party/Jacinle/bin:$PATH

Create a conda environment for NLM, and install the requirements. This includes the required python packages from both Jacinle and NLM. Most of the required packages have been included in the built-in anaconda package:

conda create -n nlm anaconda
conda install pytorch torchvision -c pytorch

Usage

This repo is extension of original NLM repository. We haven't removed the codebase of problems solved in the base repository but we are only maintaining the Sudoku codebase in this repository.

Below is the file structure for the code we have added to original repository to understand things better.

The code in difflogic/envs/sudoku contains information about the environment for reinforcement learning. grid.py selects dataset randomly from 1 Million Sudoku Dataset from Kaggle. grid_env.py creates reinforcement learning environment which can perform actions.

The code in scripts/sudoku/learn_policy.py trains the model whereas scripts/sudoku/inference.py generates prediction from trained model.

We also provide code to download dataset and pre-trained models.

Taking the Sudoku task as an example.

# To download dataset and pre-trained models
$ jac-run scripts/sudoku/download_data_mode.py

# To train the model:
$ jac-run scripts/sudoku/learn_policy.py --task sudoku --dump-dir models

# To infer the model:
$ jac-run scripts/sudoku/inference.py --task sudoku --load-checkpoint models/sudoku.pth

Below is the sample output that you should get after running inference.py where the program will generate a problem Sudoku grid and NLM model will solve it.

We have trained model with tuning with different parameters and we got below results.

Contributors ✨

Thanks goes to these wonderful people (emoji key):


Ashutosh Hathidara

💻 🤔 🚧 🎨 📖 💬 🔬

Lalit Pandey

💻 📖 🤔 🚧 🎨 💬 🔬

This project follows the all-contributors specification. Contributions of any kind welcome!

References

neuro-symbolic-sudoku-solver's People

Contributors

ashutosh1919 avatar l-pandey avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.