Coder Social home page Coder Social logo

a-unet's Introduction

A-UNet

A toolbox that provides hackable building blocks for generic 1D/2D/3D UNets, in PyTorch.

Install

pip install a-unet

PyPI - Python Version

Usage

Basic UNet

(Code): A convolutional only UNet generic to any dimension.
from typing import List
from a_unet import T, Downsample, Repeat, ResnetBlock, Skip, Upsample
from torch import nn

def UNet(
    dim: int,
    in_channels: int,
    channels: List[int],
    factors: List[int],
    blocks: List[int],
) -> nn.Module:
    # Check lengths
    n_layers = len(channels)
    assert n_layers == len(factors) and n_layers == len(blocks), "lengths must match"

    # Resnet stack
    def Stack(channels: int, n_blocks: int) -> nn.Module:
        # The T function is used create a type template that pre-initializes paramters if called
        Block = T(ResnetBlock)(dim=dim, in_channels=channels, out_channels=channels)
        resnet = Repeat(Block, times=n_blocks)
        return resnet

    # Build UNet recursively
    def Net(i: int) -> nn.Module:
        if i == n_layers: return nn.Identity()
        in_ch, out_ch = (channels[i - 1] if i > 0 else in_channels), channels[i]
        factor = factors[i]
        # Wraps modules with skip connection that merges paths with torch.add
        return Skip(torch.add)(
            Downsample(dim=dim, factor=factor, in_channels=in_ch, out_channels=out_ch),
            Stack(channels=out_ch, n_blocks=blocks[i]),
            Net(i + 1),
            Stack(channels=out_ch, n_blocks=blocks[i]),
            Upsample(dim=dim, factor=factor, in_channels=out_ch, out_channels=in_ch),
        )
    return Net(0)
unet = UNet(
  dim=2,
  in_channels=8,
  channels=[256, 512],
  factors=[2, 2],
  blocks=[2, 2]
)
x = torch.randn(1, 8, 16, 16)
y = unet(x) # [1, 8, 16, 16]

ApeX UNet

(Code): ApeX is a UNet template complete with tools for easy customizability. The following example UNet includes multiple features: (1) custom item arrangement for resnets, modulation, attention, and cross attention, (2) custom skip connection with concatenation, (3) time conditioning (usually used for diffusion), (4) classifier free guidance.
from typing import Sequence, Optional, Callable

from a_unet import TimeConditioningPlugin, ClassifierFreeGuidancePlugin
from a_unet.apex import (
    XUNet,
    XBlock,
    ResnetItem as R,
    AttentionItem as A,
    CrossAttentionItem as C,
    ModulationItem as M,
    SkipCat
)

def UNet(
    dim: int,
    in_channels: int,
    channels: Sequence[int],
    factors: Sequence[int],
    items: Sequence[int],
    attentions: Sequence[int],
    cross_attentions: Sequence[int],
    attention_features: int,
    attention_heads: int,
    embedding_features: Optional[int] = None,
    skip_t: Callable = SkipCat,
    resnet_groups: int = 8,
    modulation_features: int = 1024,
    embedding_max_length: int = 0,
    use_classifier_free_guidance: bool = False,
    out_channels: Optional[int] = None,
):
    # Check lengths
    num_layers = len(channels)
    sequences = (channels, factors, items, attentions, cross_attentions)
    assert all(len(sequence) == num_layers for sequence in sequences)

    # Define UNet type with time conditioning and CFG plugins
    UNet = TimeConditioningPlugin(XUNet)
    if use_classifier_free_guidance:
        UNet = ClassifierFreeGuidancePlugin(UNet, embedding_max_length)

    return UNet(
        dim=dim,
        in_channels=in_channels,
        out_channels=out_channels,
        blocks=[
            XBlock(
                channels=channels,
                factor=factor,
                items=([R, M] + [A] * n_att + [C] * n_cross) * n_items,
            ) for channels, factor, n_items, n_att, n_cross in zip(*sequences)
        ],
        skip_t=skip_t,
        attention_features=attention_features,
        attention_heads=attention_heads,
        embedding_features=embedding_features,
        modulation_features=modulation_features,
        resnet_groups=resnet_groups
    )
unet = UNet(
    dim=2,
    in_channels=2,
    channels=[128, 256, 512, 1024],
    factors=[2, 2, 2, 2],
    items=[2, 2, 2, 2],
    attentions=[0, 0, 0, 1],
    cross_attentions=[1, 1, 1, 1],
    attention_features=64,
    attention_heads=8,
    embedding_features=768,
    use_classifier_free_guidance=False
)
x = torch.randn(2, 2, 64, 64)
time = [0.2, 0.5]
embedding = torch.randn(2, 512, 768)
y = unet(x, time=time, embedding=embedding) # [2, 2, 64, 64]

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.