Coder Social home page Coder Social logo

ygcql's Introduction

CQL

A simple and modular implementation of the Conservative Q Learning and Soft Actor Critic algorithm in PyTorch.

If you like Jax, checkout my reimplementation of this codebase in Jax, which runs 4 times faster.

Installation

  1. Install and use the included Ananconda environment
$ conda env create -f environment.yml
$ source activate SimpleSAC

You'll need to get your own MuJoCo key if you want to use MuJoCo.

  1. Add this repo directory to your PYTHONPATH environment variable.
export PYTHONPATH="$PYTHONPATH:$(pwd)"

Run Experiments

You can run SAC experiments using the following command:

python -m SimpleSAC.sac_main \
    --env 'HalfCheetah-v2' \
    --logging.output_dir './experiment_output'

All available command options can be seen in SimpleSAC/conservative_sac_main.py and SimpleSAC/conservative_sac.py.

You can run CQL experiments using the following command:

python -m SimpleSAC.conservative_sac_main \
    --env 'halfcheetah-medium-v0' \
    --logging.output_dir './experiment_output'

If you want to run on CPU only, just add the --device='cpu' option. All available command options can be seen in SimpleSAC/sac_main.py and SimpleSAC/sac.py.

Visualize Experiments

You can visualize the experiment metrics with viskit:

python -m viskit './experiment_output'

and simply navigate to http://localhost:5000/

Weights and Biases Online Visualization Integration

This codebase can also log to W&B online visualization platform. To log to W&B, you first need to set your W&B API key environment variable:

export WANDB_API_KEY='YOUR W&B API KEY HERE'

Then you can run experiments with W&B logging turned on:

python -m SimpleSAC.conservative_sac_main \
    --env 'halfcheetah-medium-v0' \
    --logging.output_dir './experiment_output' \
    --device='cuda' \
    --logging.online

Results of Running CQL on D4RL Environments

In order to save your time and compute resources, I've done a sweep of CQL on certain D4RL environments with various min Q weight values. The results can be seen here. You can choose the environment to visualize by filtering on env. The results for each cql.cql_min_q_weight on each env is repeated and average across 3 random seeds.

Credits

The project organization is inspired by TD3. The SAC implementation is based on rlkit. THe CQL implementation is based on CQL. The viskit visualization is taken from viskit, which is taken from rllab.

ygcql's People

Contributors

young-geng avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.